
PolySpace™ Client/Server for C++ 5
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

PolySpace™ Client/Server for C++ User’s Guide

© COPYRIGHT 1999–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2008 Online Only Revised for Version 5.1 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

PolySpace™ Documentation Set

1
About this Guide . 1-2

How to Use this Guide . 1-3
Analyzing One Class . 1-3
Analyzing a Class from Microsoft® Visual Studio® 1-3
Analyzing a Class on a Server . 1-3
Analyzing Code from UML Models 1-3
Detailed Contents . 1-4

Getting Started

2
General Requirements . 2-2

Computer Configuration . 2-2
Timing Information . 2-2
Installation Guide . 2-2
Structure of this Document . 2-3

Step 1: PolySpace™ Client – Setting Up and Launching
an Analysis on a Single Class . 2-5
Overview . 2-5
Analysis Prerequisites . 2-5
Setting Up a PolySpace™ Client Analysis 2-6
PolySpace™ Client: Running the Analysis 2-13

Step 2: Class Analyzer . 2-24
PolySpace™ Class Analyzer Overview 2-24
Log File . 2-26
Behavior of Global variables and members 2-27
Methods and Classes Specificities . 2-30

iii

Step 3: PolySpace™ Viewer – Exploring Results 2-33
Overview . 2-33
Modes of Operation . 2-33
Download Results into the Viewer . 2-35
Reviewing PolySpace™ Results in “Expert” Mode

(“training.cpp”) . 2-37
Methodological Assistant . 2-54
Report Generation . 2-61

Step 4: Launch PolySpace™ Remotely 2-65
Overview . 2-65
Launching an Analysis . 2-65
Managing Your Remote Analysis: the PolySpace™

Spooler . 2-67
Batch Commands . 2-70
Sharing Analyses Between Accounts 2-72

Summary . 2-74

Analysis Setup

3
Common Compile errors . 3-2

Includes . 3-2
Specific Keyword or Extended Keyword 3-2
Initialization of Global Variables . 3-7

Dialect Issues . 3-8
ISO® versus Default Dialects . 3-8
CFront2 and CFront3 Dialects . 3-10
Visual Dialects . 3-11
GNU Dialect . 3-13

Link Messages . 3-16
STL Library C++ Stubbing Errors 3-16
Lib C Stubbing Errors . 3-17

Methodology Using the Pre-processed .ci Files 3-21

iv Contents

Overview . 3-21
Example of ci File . 3-21
Methodology Guide . 3-23

OS and Target Specifications . 3-26
List of Predefined Compilation Flags 3-26
Target Specifications . 3-29
Generic/Custom Target . 3-30

Intermediate Language Errors . 3-32

Advanced Setup . 3-34
Reduce Oranges Step by Step . 3-34
Approximations Made by PolySpace 3-47
Variables . 3-54
Types Promotion . 3-58
Built-in Functions . 3-61

PolySpace™ Class Analyzer Process

4
Analyzing C++ Classes . 4-2

Overview . 4-2
Why Provide a Class Analyzer . 4-2

Types of Classes . 4-3
Simple Class . 4-3
Simple Inheritance . 4-5
Multiple Inheritance . 4-6
Abstract Class . 4-7
Virtual Inheritance . 4-8
Other Types . 4-9

v

PolySpace™ C++ add-in for Visual Studio®

5
Overview . 5-2

Using PolySpace™ Software Within Visual Studio® . . . 5-3
Overview . 5-3
PolySpace™ Parameters Within Visual Studio® 5-3
Performing a File Verification from Visual Studio® 5-7
Analyzing Classes . 5-11
The Configuration File and Default Options 5-14

Analyzing an Entire Project . 5-16

PolySpace™ UML Link™ RH Product

6
Getting Started . 6-2

Overview . 6-2
Step 1 – Opening the Example Airbag Model 6-2
Step 2 – Starting an Analysis . 6-3
Step 3 – The Start Analysis Panel . 6-4
Step 4 – Navigating from the PolySpace™ Results to the

Rhapsody® Model . 6-8

PolySpace™ Panel . 6-10
Overview . 6-10
Start Button . 6-11
Stop Button . 6-14
Compilation Log Button . 6-14
Configure Button . 6-14
Manage Analyses Button . 6-15
View Results Button . 6-16
Browse for Results Button . 6-16
Help Button . 6-16

Installing the Integration into an Existing Model 6-17
Overview . 6-17

vi Contents

Merging the PolySpace™ Code with Rhapsody® 6-17

Other Topics . 6-19
Analysis Information . 6-19
Default Template CFG Options . 6-19
Back to Model Viewer Link . 6-20

Working with Results Review

7
Basics: Prerequisites to Reviewing PolySpace

Results . 7-2
Overview . 7-2
Grey Follows Red . 7-3
What is the Message and What does it Mean? 7-4
What is the C++ Explanation . 7-5
Review Run Time Errors: Fix Red Errors 7-7
Review Dead Code Checks: Why is Grey Code

Interesting . 7-8
How to Conclude an Orange Review 7-10

Methodology: Selective Orange Review 7-14
Overview . 7-14
The Basic Principles . 7-14
The Rationale Behind the Approach 7-15
In Practice . 7-16
Step by Step . 7-16
Considering the Effects of Application Code Size 7-17

Colored Source Code for C++ . 7-19
Category of Checks . 7-20
Function Returns a value: FRV . 7-28
Non Null this-pointer: NNT . 7-29
Positive Array Size: CPP . 7-31
Incorrect typeid Argument: CPP . 7-32
Incorrect dynamic_cast on Pointer: CPP 7-33
Incorrect dynamic_cast on Reference: CPP 7-35
Invalid Pointer to Member: OOP . 7-36
Call of Pure Virtual Function: OOP 7-37

vii

Incorrect Type for this-pointer: OOP 7-39
Potential Call to: INF . 7-41
Non-Initialized Variable: NIV/NIVL 7-43
Non-Initialized Pointer: NIP . 7-45
User Assertion Failure: ASRT . 7-45
Overflows and Underflows . 7-47
Scalar or Float Division by zero: ZDV 7-53
Shift Amount is Outside its Bounds: SHF 7-54
Left Operand of Left Shift is Negative: SHF 7-55
Power Must be Positive: POW . 7-56
Array Index is Outside its Bounds: OBAI 7-58
Function Pointer Must Point to a Valid Function: COR . . . 7-59
Wrong Number of Arguments: COR 7-60
Wrong Type of Argument: COR . 7-61
Pointer is Outside its Bounds: IDP 7-62
logic_error is Thrown: EXC . 7-70
runtime_error is Thrown: EXC . 7-73
Function throws: EXC . 7-74
Call to Throws: EXC . 7-77
Destructor or Delete Throws: EXC 7-78
Main, Tasks or C Library Function Throws: EXC 7-80
Exception Raised is Not Specified in the Throw List:

EXC . 7-82
Throw During Catch Parameter Construction: EXC 7-84
Continue Execution in __except: EXC 7-86
Unreachable Code: UNR . 7-88
Values on Assignment: VOA . 7-89
Non Terminations: Calls and Loops 7-91

Advanced Results Review . 7-97
Red Checks Where Grey Checks were Expected 7-97
Potential Side Effect of a Red Error 7-99

Options Description

8
Overview . 8-2

Sources/Includes . 8-3
-results-dir Results_Directory . 8-3

viii Contents

-sources files or -sources-list-file file_name 8-3
-I directory . 8-5

General . 8-6
Overview . 8-6
-prog Session identifier . 8-6
-date Date . 8-7
-author Author . 8-7
-verif-version Version . 8-7
-voa . 8-8
-keep-all-files . 8-8
-continue-with-existing-host . 8-8
-allow-unsupported-linux . 8-9

Targets/Compilers . 8-10
-target TargetProcessorType . 8-10
GENERIC ADVANCED TARGET OPTIONS 8-11
-OS-target OperatingSystemTarget 8-15
-D compiler-flag . 8-16
-U compiler-flag . 8-16
-include file1[,file2[,...]] . 8-17
-post-preprocessing-command "command" 8-17
-post-analysis-command <file_name> or "command" 8-18

Compliance with Standards . 8-20
-dos . 8-20
Embedded Assembler . 8-21
-wchar-t-is-unsigned-long . 8-22
-size-t-is-unsigned-long . 8-22
-no-extern-C . 8-22
-no-stl-stubs . 8-22
-dialect DialectName . 8-23
-wchar-t-is . 8-23
-for-loop-index-scope . 8-24
Visual Specific Options . 8-25
-ignore-constant-overflows . 8-27
-allow-undef-variables . 8-27
-allow-negative-operand-in-shift . 8-28
-Wall . 8-28

PolySpace Inner Settings . 8-29
-main sub_program_name . 8-29

ix

Generate a Main Using a Given Class 8-30
-main-generator-calls . 8-32
General options for the generation of mains 8-33
-no-automatic-stubbing . 8-35
-ignore-float-rounding . 8-35
-detect-unsigned-overflows . 8-37
-extra-flags option-extra-flag . 8-37
-cpp-extra-flags flag . 8-38

Precision/Scaling . 8-39
-quick . 8-39
-O(0-3) . 8-40
-from verification-phase . 8-41
-to verification-phase . 8-42
-path-sensitivity-delta number . 8-43
-context-sensitivity "proc1[,proc2[,...]]" 8-44
-context-sensitivity-auto . 8-44
-respect-types-in-globals . 8-44
-k-limiting number . 8-45
-respect-types-in-fields . 8-45
-inline "proc1[,proc2[,...]]" . 8-46
Tuning Precision and Scaling parameters 8-47

MultiTasking (PolySpace Server for C/C++ Only) 8-49
-entry-points str1[,str2[,...]] . 8-49
-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]" 8-49
-temporal-exclusions-file file_name 8-50

Specific Batch Options . 8-52
-server server_name_or_ip[:port_number] 8-52
-sources-list-file file_name . 8-53
-v | -version . 8-53
-h[elp] . 8-53

Static Verification

A
What is Static Verification . A-2

x Contents

Exhaustiveness . A-4

Glossary

xi

xii Contents

1

PolySpace™ Documentation
Set

About this Guide (p. 1-2) Describes the purpose of this manual

How to Use this Guide (p. 1-3) Describes which sections to read for
specific information

1 PolySpace™ Documentation Set

About this Guide
This document represents all the documentation required to use PolySpace™
Products, irrespective of whether you are a beginner or an experienced user.
It covers both PolySpace™ Client™ for C/C++ and PolySpace™ Server™ for
C/C++ products.

1-2

How to Use this Guide

How to Use this Guide

In this section...

“Analyzing One Class” on page 1-3

“Analyzing a Class from Microsoft® Visual Studio®” on page 1-3

“Analyzing a Class on a Server” on page 1-3

“Analyzing Code from UML Models” on page 1-3

“Detailed Contents” on page 1-4

Analyzing One Class
• Do you want to perform your first analysis and results review?

• Is it possible for you to restrict data (functional) ranges in the file?

• Do you have issues with setting up or launching an analysis?

• When reviewing results, is your main concern

- Productivity — Do you wish to focus on productivity by finding bugs
quickly?

- Reliability — Do you want to examine every result PolySpace™ analysis
provides?

Analyzing a Class from Microsoft® Visual Studio®

Do you want to analyze a class coming from a project using Microsoft® Visual
Studio®.NET IDE?

Analyzing a Class on a Server
Do you want to perform a class analysis taking place on a server, and do
you want access the queued analysis?

Analyzing Code from UML Models
Do you want to analyze code generated from UML models using PolySpace
UML Link™ RH?

1-3

1 PolySpace™ Documentation Set

Detailed Contents
• PolySpace Installation. Please refer to the PolySpace Installation Guide

and the PolySpace License Installation Guide located on the CD-ROM (in
<CD-ROM>\Docs\Install).

• Chapter 2, “Getting Started” explains how to get started with PolySpace
software. It explains the principles of the tool, describes the installation
procedure, and explains how to use the product with reference to some
simple scenarios.

• Chapter 3, “Analysis Setup” details all features of PolySpace software which
are relevant when preparing to analyze your code. It is a comprehensive
reference manual for the launching of analyses. It contains all information
related to the launching of an analysis, error messages at different phases
of an analysis, and means at setup-time to reduce ill founded warnings
(oranges).

• Chapter 4, “PolySpace™ Class Analyzer Process” gives a strategy for
analyzing C++ classes. This allows the developer to identify, and possibly
remove most of the runtime errors present in a class depending of the type
of the class to analyze.

• Chapter 5, “PolySpace™ C++ add-in for Visual Studio®” provides automatic
source code verification and bug detection in source code developed inside
the Visual IDE.

• Chapter 6, “PolySpace™ UML Link™ RH Product” – While using
Collaborative Model-Driven Development, run-time errors can be caused
either by design issues in the model itself or faulty hand written code.
These reliability flaws can sometimes be found using code reviews and
intensive testing – but these techniques are time-consuming and costly.
PolySpace UML Link RH performs an exhaustive verification of the C++
code and automatically flagging flaws directly in the original Rhapsody®

model, enabling engineers to fix these issues quickly and early during the
design process.

• Chapter 7, “Working with Results Review” details all features of PolySpace
software which are relevant when reviewing your results. It is a
comprehensive reference document, giving typical examples for each error
category, offering advice on getting started with your first results, advising
which colors to look at, and explaining how to find bugs efficiently.

1-4

How to Use this Guide

• “Advanced Setup” on page 3-34 includes options description for PolySpace
software, hints and tips for quicker PolySpace Verifier analyses, and a
complete description of those features which are used in order to launch a
PolySpace analysis.

1-5

1 PolySpace™ Documentation Set

1-6

2

Getting Started

General Requirements (p. 2-2) Describes requirements to consider
before beginning the tutorial

Step 1: PolySpace™ Client – Setting
Up and Launching an Analysis on a
Single Class (p. 2-5)

Describes how to analyze a simple
C++ class using PolySpace™ Client™
for C/C++

Step 2: Class Analyzer (p. 2-24) Describes how to use the PolySpace™
class analyzer

Step 3: PolySpace™ Viewer –
Exploring Results (p. 2-33)

Describes how to interpret the
results of your analysis

Step 4: Launch PolySpace™
Remotely (p. 2-65)

Describes how to perform an analysis
remotely using PolySpace™ Server™
for C/C++

Summary (p. 2-74) Provides a summary of the
information presented in this
chapter

2 Getting Started

General Requirements

In this section...

“Computer Configuration” on page 2-2

“Timing Information” on page 2-2

“Installation Guide” on page 2-2

“Structure of this Document” on page 2-3

Computer Configuration
Minimum hardware requirements to follow step by step this
tutorial on a Windows® PC are described in the installation
guide available from the PolySpace™ installation CD-ROM
(\Docs\Install\PolySpace_Install_Guide.pdf).

Timing Information
The installation of PolySpace products takes around 5 minutes (see the
complete installation guide is available from the PolySpace installation
CD-ROM in \Docs\Install\PolySpace_Install_Guide.pdf).

• The first step of this tutorial takes about 15 minutes.

• The second step of this tutorial takes about 15 minutes.

• The third step of this tutorial takes about 5 minutes.

Installation Guide

Note If the PolySpace products are already installed on your computer,
please go directly to step 1.

The PolySpace products are delivered on a CD-ROM. There are 4 modules:

• PolySpace™ Client™ for C/C++ product – analyzing single class.

2-2

General Requirements

• PolySpace™ Server™ for C/C++ product – analyzing classes or composite
analysis.

• PolySpace Viewer is the graphical user interface to explore the results
computed by PolySpace Client or PolySpace Server.

• PolySpace Spooler is the graphical interface to manage analysis sent in
remote.

Please refer to the PolySpace Installation Guide for installing the PolySpace
products.

Structure of this Document
Once the installation is done, you can launch PolySpace software by using the
following icons that were placed on your desktop:

This Getting Started chapter will focus on the following steps using PolySpace
products:

• In “Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on
a Single Class” on page 2-5 we will analyze a simple class in “training.cpp”
by using the class analyzer available in PolySpace Client for C/C++.

• In “Step 2: Class Analyzer” on page 2-24 we will describe the capabilities
of the class analyzer.

2-3

2 Getting Started

• In “Step 3: PolySpace™ Viewer – Exploring Results” on page 2-33 we will
review the results obtained during Step 1 by using PolySpace Viewer

• In the “Step 4: Launch PolySpace™ Remotely” on page 2-65, instead of
performing a PolySpace analysis locally, we will send it remotely to a server.

2-4

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

Step 1: PolySpace™ Client – Setting Up and Launching an
Analysis on a Single Class

In this section...

“Overview” on page 2-5

“Analysis Prerequisites” on page 2-5

“Setting Up a PolySpace™ Client Analysis” on page 2-6

“PolySpace™ Client: Running the Analysis” on page 2-13

Overview
This chapter describes a basic class analysis. It focuses on the analysis of
MathUtils class of “training.cpp”, which is included in the PolySpace™
installation directory and located at:

<PolySpaceInstallDir>\Examples\Demo_Cpp_Long\sources\training.cpp.

The PolySpace analysis process is composed of three main phases:

1 First, PolySpace checks the syntax and semantic of the analyzed
file(s). However, as PolySpace is not associated to a particular compiler,
benefits of this phase are triple for the analyzed source code: ANSI C++
compliance, portability and maintainability.

2 Then, PolySpace seeks the main procedure. If none is found, PolySpace
Client for C/C++ will generate one automatically. By default, the main will
build an instance of the class using the constructor and call all its public
and protected function methods.

3 Finally, PolySpace proceeds with the code analysis phase, during which run
time errors are detected and highlighted in the code.

Analysis Prerequisites
Any analysis requires the following:

• PolySpace Client For C/C++ product and its related license file correctly
installed;

2-5

2 Getting Started

• Source code files (in this case “training.cpp”) and all header files that it
may directly or indirectly include. For this tutorial we will see later that
we need three header files, “training.h”, “zz_utils.h” and “math.h” in order
to analyze the class MathUtilsin “training.cpp”.

• All “-D” compilation switches necessary to compile the file are known.
Please note that in this tutorial, no “-D” is necessary to compile
“training.cpp”.

Setting Up a PolySpace™ Client Analysis

1 Double-click on the PolySpace Launcher icon:

A dialog box window appears proposing to launch one of the following
categories of analysis mixing the type of product and the language:

2 Select Desktop Launcher, and C++, then click OK.

The Graphical Interface of PolySpace analysis Launcher is displayed as
below:

2-6

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

3 Select File > New Project to start an analysis:

2-7

2 Getting Started

The PolySpace Client New Project window opens. It contains four sections:

• At the very top, the title bar, which contains usual icons and menus;

• Top left is the list of files to analyze, along with include and results
directories;

• Top right is the set of options associated with the analysis that will be
processed;

• Finally the bottom area allows following the execution and progress
of the analysis.

2-8

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

Note it is also possible to drag a directory or source files and drop it them
directly in the “File Name/Absolute Path” part (top left of PolySpace Client)
without using the “Please select a file” window.

4 Start by updating the result directory name by clicking on the browse

button .

2-9

2 Getting Started

This directory is the one where PolySpace Client will store the
results of the analysis. By default, PolySpace will store results in
“C:\PolySpace_Results”. This is the directory that we will choose for the
analysis.

5 Now, Click on the button (right of the “New Project” label).

It opens the “Please select a file” window, from which you can select one
or several files to analyze.

6 In the “Look in” section, click on , and select
“<PolySpaceInstallDir>\Examples\Demo_Cpp_Long\sources”. A list

2-10

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

of files appears in the box (<PolySpaceInstallDir> corresponds to
C:\PolySpace\PolySpaceForCandCPP in the figure above).

7 Select “training.cpp” and click on in the “Source files [-sources]” section
(bottom left) of the window. The file is now listed among the source files
to be analyzed.

8 Click on OK to go back to the “PolySpace Client for CPP - New_Project”
window.

2-11

2 Getting Started

Note it is also possible to drag a directory or source files and drop it them
directly in the “File Name/Absolute Path” part (top left of PolySpace Client)
without using the “Please select a file” window.

9 Now, click on and expand the
“PolySpace inner settings” group.

10 Check the box in the “Generate a main” column
that is associated to the “-main-generator” line as shown below. It enables
the “-class-analyzer” option allowing to give the name of the class to
analyze (see also step 2). For the needed of this tutorial, please type
“MathUtils” in the column at the centre as shown in the figure below. When
the class is surrounded by a name space, use the standard C++ syntax
<namespace>::<classname>.

2-12

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

11 It is also recommended to select the -voa option. This option allows you
to give some information on each scalar assignment with possible range of
values. It can help understanding PolySpace messages.

Note When you want to analyze classes alone, the -class-only option can
been checked. It means that even if you add any other classes and function
members definitions, PolySpace will stubs them. This option accelerates
analysis and allows to check robustness issues only on the class. For the
need of this tutorial, it is not necessary to check this option: the “MathUtils”
class does not depend on other classes.

PolySpace™ Client: Running the Analysis

• “Starting the Analysis” on page 2-13

• “Parsing Errors During Preliminary Analysis Stages” on page 2-15

• “Progression of the Analysis” on page 2-21

• “End of the Analysis” on page 2-23

Starting the Analysis
To run the analysis:

1 Click on to start the analysis. Alternatively, you can click on the
button in the title bar to run PolySpace Client with the current setting.

The window titled “Save the project as” opens. You can decide where to
store the configuration information related to the analysis. Here, create a
file called “demotutorial” and save it under PolySpace result directory. The
full name of that file will be “demotutorial.dsk”.

2-13

2 Getting Started

2 Click OK to go back to the “PolySpace Client for CPP - New_Project”

window and click again on to proceed.

2-14

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

A progress report is displayed in the bottom part of the graphical interface,
indicating that the analysis is being performed. The Execute button is
also grayed out.

Note You may press the Stop Execution button - to
interrupt the analysis but it is not part of the current tutorial.

Parsing Errors During Preliminary Analysis Stages
After some checks, PolySpace will show an error message:

2-15

2 Getting Started

Lets try and understand why we get this error message.

First Possible Cause for the Error Message: Hardware
Recommendation. If this happens, please verify whether your computer fits
the minimal hardware configuration requirements described in the general
requirements. Moreover, a message like the following one is displayed in the
bottom part of the graphical interface:

1 Type “host” in the “Search in the log:” box and click on to search if the
error corresponds to a hardware recommendation problem.

If the error message corresponds to the one shown above and in order to
continue analysis, you can either:

• upgrade your computer to meet the minimal requirements, or

2-16

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

• use the -continue-with-existing-host option which overrides the
initial check for minimal hardware configuration. To do so, please follow
the following steps:

2 To set up the -continue-with-existing-host option, please type
“continue” in the Search internal name from the selected line (top right box).

3 Click .

It will show all options containing “continue” in the set of options part
below:

4 Check the box in the “Value” column that is
associated to the “-continue-with-existing-host” line as shown below.

2-17

2 Getting Started

Second Possible Cause for the Error Message: Information About
Header Files. Another cause of error may be that PolySpace Desktop misses
some package specifications.

In the tutorial, as shown above, the file named “math.h” can not be found.
To fix this problem, you need to indicate its location. As PolySpace is not
associated with one particular compiler, it is mandatory to indicate where
library files are stored.

In our “training.cpp” file analysis, the related “math.h” file is one
of includes distributed with PolySpace C++ product located in
<PolySpaceInstallDir>\include\include-linux-cpp. This distribution concerns
a Linux OS target and is only given as material of help. For analyzing
your code, it is recommended to indicate the path to the standard headers
dedicated to your own compiler.

1 Open the “Please select a file” window using the button (right of the
“demotutorial.dsk” label in the top right of the interface):

2-18

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

2 Select “<PolySpaceInstallDir>\Verifier\include\include-linux-cpp”, where
an exemplary of <“math.h”> is located for the Linux OS target.

3 Click on in the “Directories to include [-I]” section.

Select “<PolySpaceInstallDir>\Examples\Demo_Cpp_Long\sources”,
where “training.h” is located.

4 Click on in the “Directories to include [-I]” section, then close the

window using .

2-19

2 Getting Started

Note Other header file needed “zz_utils.h” is also located in same directory.

It is also possible to drag a directory and drop it directly in the “include
directories [-I]” part (top left of PolySpace Desktop) without using the
“Please select a file” window.

In this tutorial, as we have chosen includes of the OS Linux distribution, we
have to select a Linux OS target. It defines a set of predefined compilation
flags, known to be default or implicit compile options from cross-compiler
for these platforms:

5 To set up the -OS-target Linux option, enter “OS-target” in the Search
internal name from the selected line — top right box.

6 Then click on . It will show all options containing “OS-target” in the
set of options part below:

2-20

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

7 Then, click on the , allowing to chose linux OS target out of some
predefined Operating System targets in the list solaris, linux, vxworks,
no-predefined-OS and visual.

Note Associated to chosen Operating System (except no-predefined-OS),
PolySpace dedicates a set of accurate stubs concerning standard templates
and C libraries.

Progression of the Analysis

1 Click on to restart the analysis.

2-21

2 Getting Started

If you previously clicked Execute, some results may have already been
written in the “C:\PolySpace_Results” directory. Therefore a window opens
to check whether you want to overwrite in this directory or not:

2 If this happens, click Yes.

Note Closing the PolySpace Desktop window will not stop the PolySpace

analysis. If you wish to stop it, click (a window of
confirmation follows the click). If the window is closed without stopping the
analysis, it continues in background. Opening again PolySpace Desktop
with the same project automatically updates the analysis with its current
status.

The progress bar allows to follow the progress of the analysis:

3 To obtain a progress report, click on for the compilation

phase, or for the full analysis in the low level window.

4 Click to get other pieces of information about current
analysis (list of options, stubbed functions, functions used during main
construction, checks found after each phase, etc.).

5 Click the icon to refresh the summary.

2-22

Step 1: PolySpace™ Client – Setting Up and Launching an Analysis on a Single Class

End of the Analysis
When the analysis ends, PolySpace proposes to review the results:

If you Click OK, go to the next section of the tutorial to view the results.

If you click Cancel, and no other analyses are running, you can access the

results via the icon in the title bar.

2-23

2 Getting Started

Step 2: Class Analyzer

In this section...

“PolySpace™ Class Analyzer Overview” on page 2-24

“Log File” on page 2-26

“Behavior of Global variables and members” on page 2-27

“Methods and Classes Specificities” on page 2-30

PolySpace™ Class Analyzer Overview
PolySpace Class Analyzer analyses applications class by class, even if theses
classes are only partially developed.

Benefits: detecting errors at a very early stage, even if the class is not fully
developed, without any test cases to write. The process is very simple: give
the class name (see step 1), and the PolySpace Class Analyzer will analyze its
robustness:

• PolySpace will generate a “pseudo” main;

• It will call each constructor of the class;

• Then it will call each public function from the constructors;

• Each parameter will be initialized with full range (i.e. with a random
value);

• External variables are also defined to random value.

Note Only prototypes of objects (classes, methods, variables, etc.) are needed
to analyze a given class. All missing code will be automatically stubbed.

As a result, a class will be analyzed by exploring every branch of the methods
through all its constructors (see some restrictions in the next section).

2-24

Step 2: Class Analyzer

Sources to be Analyzed
The functions that are analyzed include all non-inherited constructors and
destructors, and all non-inherited public or protected methods of the class.
However, sources can also come from inherited classes (fathers) or be the
sources of other classes used by the class that is being analyzed (friend, etc.).

Architecture of the Generated main
PolySpace generates the call to each constructor and method of the class. Each
method will be analyzed with all constructors. Each parameter is initialized
to random. However, even if you can have an idea of the architecture of the
generated main in PolySpace Viewer, the main is not real. You can not reuse
and compile it with your analysis or PolySpace.

If we come back to the class “MathUtils”, analyzed in the first step, it contains
one constructor, a destructor and seven public methods. The architecture
of the generated main is as follows:

Generating call to constructor: MathUtils:: MathUtils ()

While (random) {

If (random) Generating call to function: MathUtils::Pointer_Arithmetic()

If (random) Generating call to function: MathUtils::Close_To_Zero()

If (random) Generating call to function: MathUtils::MathUtils()

If (random) Generating call to function: MathUtils::Recursion_2(int *)

If (random) Generating call to function: MathUtils::Recursion(int *)

If (random) Generating call to function: MathUtils::Non_Infinite_Loop()

If (random) Generating call to function: MathUtils::Recursion_caller()

}

Generating call to destructor: MathUtils::~MathUtils()

Note An ASCII file representing the “pseudo” main can be seen in
C:\PolySpace_Results\ALL\SRC__polyspace_main.cpp

If the class contains more than one constructor, they are called before the
while statement in an if then else statement. From a PolySpace point of view,
this architecture ensures that the analysis will evaluate each function method
with every constructor.

2-25

2 Getting Started

Log File

• “Log File Overview” on page 2-26

• “Characteristics of a Class and Messages of the Log File” on page 2-27

Log File Overview
When analyzing a class, the list of methods used for the main is also given in
the log file during the normalization phase of the C++ analysis.

You can have the details of what will be analyzed in the log. Here is the
example concerning the MathUtils class and associated log file which can be
found at root of the C:\PolySpace_Results:

**

*** Beginning C++ source normalization

**
Number of files : 1
Number of lines : 202
Number of lines with libraries : 7009
**** C++ source normalization 1 (Loading)
**** C++ source normalization 1 (Loading) took 20.8real, 7.9u + 11.4s
(1gc)
**** C++ source normalization 2 (P_INIT)
* Generating the Main ...
Generating call to function: MathUtils::Pointer_Arithmetic()
Generating call to function: MathUtils::Close_To_Zero()
Generating call to function: MathUtils::MathUtils()
Generating call to function: MathUtils::Recursion_2(int *)
Generating call to function: MathUtils::Recursion(int *)
Generating call to function: MathUtils::Non_Infinite_Loop()
Generating call to function: MathUtils::~MathUtils()
Generating call to function: MathUtils::Recursion_caller()

It may happen that a main is already defined in the files you are analyzing.
In this case, no other main will be generated, and this one will be analyzed.
You will receive this warning:

2-26

Step 2: Class Analyzer

*** Beginning C++ source normalization

* Warning: a main procedure already exists.
* No main will be generated: the existing one will be used

Note The main will be analyzed even if it does not concern the class given
to the -class-analyzer option.

Characteristics of a Class and Messages of the Log File
The log file may contain some error messages concerning the class to analyze.
Theses messages appear when characteristics of class are not respected:

• It is not possible to analyze a class which does not exist in the given
sources. The analysis will stop with the following message:

@User Program Error: Argument of option -class-analyzer
must be defined : <name>.
Please correct the program and restart the verifier.

• It is not possible to analyze a class which only contains declarations without
code. The analysis will stop with the following message:

@User Program Error: Argument of option -class-analyzer \
must contain at least one function : <name>.
Please correct the program and restart the verifier.

Behavior of Global variables and members

• “Global Variables” on page 2-28

• “Data Members of Other Classes” on page 2-29

2-27

2 Getting Started

Global Variables
In a class analysis, global variables are not considered as following ANSI
Standard anymore. if they are defined and but not initialized. Remember
that ANSI Standard considers, by default, that global variables are initialized
to zero.

In a class analysis, global variables do not follow standard behavior:

• Defined variables: they are initialized to random. Then they follow the
data flow of the code to analyze.

• Initialized variables: they are used with the initialized value. Then they
follow the data flow of the code to analyze.

• External variables: the analysis will stop. To continue the analysis, it is
mandatory to use the -allow-undef-variable option. In doing so, external
variables follow the behavior of a defined variable.

An example below shows behavior of two global variables:

1
2 extern int fround(float fx);
3
4 // global variables
5 int globvar1;
6 int globvar2 = 100;
7
8 class Location
9 {
10 private:
11 void calculate_new(void);
12 int x;
13
14 public:
15 // constructor 1
16 Location(int intx = 0) { x = intx; };
17 // constructor 2
18 Location(float fx) { x = fround(fx); };
19
20 void setx(int intx) { x = intx; calculate_new(); };
21 void fsetx(float fx) {

2-28

Step 2: Class Analyzer

22 int tx = fround(fx);
23 if (tx / globvar1 != 0) // ZDV check is orange
24 {
25 tx = tx / globvar2; // ZDV check is green
26 setx(tx);
27 }
28 };
29 };

In this example, globavar1 is defined but not initialized (see line 5): the check
ZDV is orange at line 23. On the other hand, globvar2 is initialized to 100 (see
line 6). The ZDV check is green at line 25.

Data Members of Other Classes
When analyzing a specific class, variable members of other classes, even
members of parent classes, are considered as initialized. They follow the
following behavior:

1 They are considered as may be not initialized (unproven check NIV), if
constructor of the class is not defined. So they are assigned to full range
and then, they follow the data flow of the code to analyze.

2 They are considered as initialized to the value defined in the constructor, if
the constructor of the class is defined in the class and given to the analysis.
If -class-only option is used, it just like definition of constructor is missing
(see item 1). Then they follow the data flow of the code to analyze.

3 They could be checked as run-time error, if and only if, the constructor is
defined and does not initialize the considered member.

An example below shows the result of the analysis of the class MyClass. It
shows behavior of a variable member of the class OtherClass given without
definition of its constructor:

class OtherClass
{
protected:
int x;
OtherClass (int intx); // code is missing

public:

2-29

2 Getting Started

int getMember(void) {return x;}; // NIV is warning
};
class MyClass
{
OtherClass m_loc;

public:
MyClass(int intx) : m_loc(0) {};
void show(void) {
int wx, wl;
wx = m_loc.getMember();
wl = wx*wx + 2; // Possible overflows because OtherClass

// member is assigned to full range
};
};

In the example above, variable member of OtherClass is checked initialized to
random: the check is orange at line 7 and there are possible overflows at line
17 because range of the return value wx is full range in the type definition.

Methods and Classes Specificities

• “Template” on page 2-30

• “Abstract Classes” on page 2-31

• “Static Classes” on page 2-31

• “Inherited Classes” on page 2-31

Template
A template class can be not analyzed alone. Only instance of a template will
be considered as the class that can be analyzed with the PolySpace Class
Analyzer.

template<class T, class Z> class A { }

In the example above, we want to analyze template class A with two class
parameters T and Z. For that, we have to define a “typedef” to create a
specialization of the template, with a specific specialization for T and Z. In the
example below, T represents a int and Z a double:

2-30

Step 2: Class Analyzer

template class A<int, double>; // Explicit specialisation
typedef class A<int, double> my_template;

my_tempate is used as parameter of -class-analyzer option, to analyze the
this instance of template A.

Abstract Classes
In the real world an instance of an abstract class can not be created, so it
can not be analyzed. However, it is easy to analyze by “removing” the pure
declarations. For example, in an abstract class definition change:

void abstract_func () = 0; by void abstract_func ();

If an abstract class is given to analyze, the class analyzer will make the
change automatically and the virtual pure function (in the example above
abstract_func) will then be ignored in the analysis of the abstract class.

This means that no call will be made from the generated main, so function is
purely ignored. Moreover, if the function is called by another one, the pure
virtual function will be stubbed and an orange check will be put on the call:
“call of virtual function [f] may be pure”.

Static Classes
If a class defines static methods, they are called in the generated main as a
classical one.

Inherited Classes
When a function is not defined in a derived class, even if it is visible because
inherited from a fathers class, it is not called in the generated class. In the
example below, the class Point derives from the class Location:

class Location
{
protected:
int x;
int y;
Location (int intx, int inty);

public:

2-31

2 Getting Started

int getx(void) {return x;};
int gety(void) {return y;};

};
class Point : public Location
{
protected:
bool visible;

public :
Point(int intx, int inty) : Location (intx, inty)
{
visible = false;
};
void show(void) { visible = true;};
void hide(void) { visible = false;};
bool isvisible(void) {return visible;};

};

Since the two methods Location::getx and Location::gety are “visible” for
derivated classes, the generated main does not include theses methods when
analyzing the class Point. No matter because, we have to analyze the Location
class

However, inherited members are considered as volatile if there are not
explicitly initialized in the fathers constructors. In the example above, the use
of the two members Location::x and Location::y will be considered as volatile.
Indeed, if we analyze the above example in the current state, the method
Location:: Location(constructor) will be stubbed.

2-32

Step 3: PolySpace™ Viewer – Exploring Results

Step 3: PolySpace™ Viewer – Exploring Results

In this section...

“Overview” on page 2-33

“Modes of Operation” on page 2-33

“Download Results into the Viewer” on page 2-35

“Reviewing PolySpace™ Results in “Expert” Mode (“training.cpp”)” on page
2-37

“Methodological Assistant” on page 2-54

“Report Generation” on page 2-61

Overview
This step illustrates how to explore analysis results that were generated by
either PolySpace Client or PolySpace Server. We review the results of the
analysis of “training.cpp” performed during “Step 1: PolySpace™ Client –
Setting Up and Launching an Analysis on a Single Class” on page 2-5.

If you clicked OK at the “End of the Analysis” on page 2-23 in Step 1,
PolySpace Viewer automatically opens results.

Modes of Operation
The first time The PolySpace Viewer is opened, a sub-window will appear
after the splash screen of the viewer. It is aimed to warn user about different
modes of operation. User has to choose between launching the Viewer in an
“expert” mode or in an “assistant” mode.

2-33

2 Getting Started

The mode will define the reviewing process of checks highlighted during an
analysis:

• Expert mode —The Viewer is opened in a mode where all checks can be
seen. The number, the order and the categories of checks to be reviewed
have to be selected by the user himself (See next section).

• Assistant mode — The reviewing rules for a C++ analysis results follows
a methodology selected by PolySpace. It concerns the “best” subset of
checks sorted out for user. The PolySpace Viewer will then guide user
through these selected checks.

For the need of this tutorial, please untick “Do not display this message again”
and then click on “Expert mode”.

2-34

Step 3: PolySpace™ Viewer – Exploring Results

Note Even if the user has chosen one mode it is easy in one click to change
the mode inside the PolySpace Viewer.

Download Results into the Viewer
After having clicked on “Expert mode” the PolySpace Viewer window looks
like the figure below:

1 Click File > Open to load result files.

Note If you did not perform the analysis, you can still review the results
by opening the following file:

<Install Directory>\Examples\Demo_CPP_Long\
RTE_px_O2_Demo_Cpp_Long_LAST_RESULTS.rte. We will focus on
“training.cpp” Procedural entity.

2 Select the following file located in “C:\PolySpace_Results”.

2-35

2 Getting Started

3 Click Open to proceed with further steps

Note The RTE_px_O2_<Project Name>_LAST_RESULTS.rte is a sort of
“link” on the best analysis in term of precision. This analysis is represented
by RTE_p4_O2_Safety_Analysis_Level4.rte file. Lower level files represent
lower precision analysis.

2-36

Step 3: PolySpace™ Viewer – Exploring Results

Reviewing PolySpace™ Results in “Expert” Mode
(“training.cpp”)

• “Overview of Expert Mode” on page 2-37

• “Procedural Entities View (RTE View)” on page 2-39

• “Colors in the Source Code View” on page 2-45

• “More Examples of Run-Time Errors” on page 2-46

• “Advanced Results Exploration” on page 2-49

• “C++ specific checks” on page 2-53

• “Miscellaneous” on page 2-53

Overview of Expert Mode
After loading the results, and PolySpace Viewer window looks like below:

2-37

2 Getting Started

• On the left is the Procedural entities view (or RTE view). It displays the
list of packages which have been analyzed or used during the analysis
(specifications).

• In the bottom right area is the source code view with colored instructions.
Each operation checked is displayed using meaningful color scheme and
related diagnostic:

- Red — Errors which occur at every execution.

- Orange — Warning - an error may occurs sometimes.

- Grey — Shows unreachable code.

2-38

Step 3: PolySpace™ Viewer – Exploring Results

- Green — Error condition that will never occur.

• The two windows just below the tool bar concern details of a currently
reviewed check (when the check has been selected):

• The top right area is used for displaying both control and data flow results.
You can switch from one view to the other by using the “Windows” menu:

Procedural Entities View (RTE View)
Each file and underlying functions in the procedural entities view (or RTE
view) is colorized according to the most critical error found:

• exception.stdh — This file contains no check. This file contains stubs of
the <exception> template part of the standard stl library. This template
stubs is an accurate representation of the initial template provided by
PolySpace. All templates of standard library have been stubbed to speed
up analyses.

• new.stdh — This file contains no check. This file contains implemented
stubs of <new> part of stl library template.

__polyspace_main.cpp — This file contains the main which was
automatically generated. All checks there are green: no run-time error (or
RTE) has been found. Please note that the pseudo code in this file is only

2-39

2 Getting Started

here to give information about the generated main. It must not be analyzed
with PolySpace.

training.cpp — This file is red. This is the famous “training.cpp”
containing the analyzed Class “MathUtils”. One or more definite run-time
errors have been found in it.

training.h — This file is the famous “training.h”, locale header included
in “training.cpp”. All checks are green: no run-time error (or RTE) has
been found.

__polyspace_stdstubs.c — It contains stubs of standard functions part of
libc library used in training.cpp. This file contains no check.

__polyspace__stdstubscpp.cpp — It contains stubs of some standard
functions part of the stl library used in training.cpp. This file contains
no check.

Click once on the left of “training.cpp” to find out more about this file.

“training.cpp” is expanded and the list of function members defined within
“MathUtils” of “training.cpp” is displayed. The function members in red or grey
have code sections that need to be inspected (MathUtils::Pointer_Arithmetic(),
MathUtils::Recursion_caller(), etc.) first because they are definite diagnosis
of PolySpace (either runtime errors or dead code).

2-40

Step 3: PolySpace™ Viewer – Exploring Results

The columns (, , , , and) provide information about run-time
errors found in each function. The following table describes each of these
columns.

Column Indicates

Reliability of the code (level of proof).

Number of definite run-time errors or reds.

2-41

2 Getting Started

Column Indicates

Number of warnings or oranges (that may hide run-time errors
that do not occur systematically).

Number of safe operations or greens.

Number of unreachable instructions or grey code sections.

Lets have a look at some errors found by PolySpace in “training.cpp”.

First Example of Runtime Error Found by PolySpace: Memory
Corruption.

1 Click on to expand “MathUtils::Pointer_Arithmetic()“ to find out more
about the red error. It displays a list of red, green, and orange symbols,
featuring the complete list of code areas that PolySpace checked within the
“MathUtils::Pointer_Arithmetic()” function.

2-42

Step 3: PolySpace™ Viewer – Exploring Results

2 Click on the red “IDP.13” item - which stands for Illegal De-referenced
Pointer -, to precisely locate this error in the source code. The bottom right
section is updated showing the location of the “IDP.13” item.

2-43

2 Getting Started

3 Click on red symbol in the source code at line 72. An error message is
opened with the exact location:

2-44

Step 3: PolySpace™ Viewer – Exploring Results

Pointer p is de-referenced outside of its bounds. Indeed, at line 72 the
instruction “*p = 5;” corrupts the memory as it puts the value “5” outside
of the array “tab” pointed to by the pointer “p”.

4 You can also see the calling sequence leading to that particular red code
section. To do so, select “IDP.13” item in the “Procedural entities” column

in the RTE View, and then click on the icon (on the top left of the
PolySpace Viewer window) to display the corresponding run-time error
access graph:

Colors in the Source Code View
Each operation checked is also displayed using meaningful color scheme and
related diagnostic in the source code view as links:

2-45

2 Getting Started

• Red — A link to the error message associated to the error which occurs at
every execution.

• Orange — A link to an unproven message - an error may occur sometimes.

• Grey — A link to a check shown as unreachable code. The error message is
in grey.

• Green — A link to a VOA (Value on Assignment) or an error condition
that will never occur.

• Black — Represents some comments, source code that does not contain
any operation to be checked by PolySpace in terms of run time errors and
optimized operations, e.g. x := 0;.

• Blue — Text highlighting the keyword “procedure” and “function”

• Blue Underlined — A link to a global variable in the “Global variable
View”.

More Examples of Run-Time Errors
Unlike most other testing techniques, PolySpace provides the benefit of
finding the exact location of run-time errors in the source code. Below are
some examples that you can review with PolySpace Viewer.

Example: Non-Infinite Loop. Select “MathUtils::Non_Infinite_Loop()” in
the “Procedural entities” column in RTE View. The function is fully green: it
means that the locale variable x never overflows, even if the exit condition
of loop deals with y that is smaller than x. PolySpace confirms that the
function always terminates.

2-46

Step 3: PolySpace™ Viewer – Exploring Results

Note Using -voa option at launching time, PolySpace can help more suitably
by giving information of range on scalar assignment.

Example: Unreachable Code. We can also see in the “Procedural entities”
column that some function members are never called. It is materialized by a
reverse video in grey:

2-47

2 Getting Started

In the figure above it is the case for all public and protect member functions
of “Square” and “RTE” classes. Indeed, the PolySpace analysis was made for
the class “MathUtils”.

2-48

Step 3: PolySpace™ Viewer – Exploring Results

Advanced Results Exploration
You can filter the information provided by PolySpace to focus on the type of
errors you wish to investigate.

There are pre-defined composite filters (, and that you can
choose depending on your development process. Theses filters are accessible
through a combo list:

To illustrate the use of these filters, we will focus on the Pointer arithmetic
member function that we have examined in a previous section.

Gamma Mode. Gamma mode provides all the “red” and “grey” code sections.
It is mainly used during the earliest development stages to focus quickly
on critical bugs.

To select Gamma mode, click the button.

The software reduces the information checks related to
“MathUtils::Pointer_Arithmetic()”.

2-49

2 Getting Started

This list of acronyms - for type of operations checked - shows what PolySpace
automatically analyzed for you. In the case of member function is an illegal
dereference pointer error (IDP.13).

Note VOA check (Value On Assignment) is only informative check that are
never hidden.

Beta Mode. Beta mode highlights checks that could cause a processor halt,
memory corruptions or overflows. Beta mode is the default mode.

To select Beta mode:

1 Click .

2 Select “MathUtils::Pointer_Arithmetic()” in the “Procedural entities” view.

3 Click to get the list of the checks.

2-50

Step 3: PolySpace™ Viewer – Exploring Results

Alpha Mode. Alpha Mode provides a comprehensive list of operations
checked by PolySpace.

To switch to Alpha mode, click .

You may also want to use filters to focus on particular categories of errors.
Those filters are located at the top of the PolySpace Viewer window:

2-51

2 Getting Started

Note When the mouse pointer moves on the filter, a tool tips gives its
definition.

• Click (top of the window) to suppress all checks, then click .

You will get list of checks containing only IDP (Illegal Dereference
Pointers) reds, oranges or greens:

• Click (top of the window) to suppress green code sections.

You will get a reduced list of checks reds, oranges and grays:

2-52

Step 3: PolySpace™ Viewer – Exploring Results

C++ specific checks
Specific C++ checks are dispatched in five categories:

• NNT category or Non Null This pointer (). It checks this pointer
validity.

• CPP category. It concerns C++ related constructions (), like positive
array size verification, dynamic_cast, and typeid.

• OOP category. It concerns all C++ object oriented verification ():
inheritance and virtual calls.

• EXC category. It concerns all C++ constructions dealing with exceptions

().

• INF category. It concerns information about C++ implicit and called

functions when dealing with virtual functions ().

When reviewing C++ code with PolySpace Viewer, it is important to have a
selective review check by check which follows the list of categories located at
the top of the PolySpace Viewer window. Checks are classified from the left
to the right. It is important to begin a review following this order. It is also
important to begin by C “like” checks before C++ like “checks”.

This methodology permits to focus first by the categories which are most
susceptible to hide run time errors. This methodology has been automatically
applied in the “Methodological Assistant” on page 2-54.

Miscellaneous

The icon gives access to the PolySpace Manual. All views have a pop-up
menu (right click on mouse).

Close the PolySpace Viewer window by clicking on the upper right

2-53

2 Getting Started

symbol (PolySpace Viewer can also be closed using File > Close).

Methodological Assistant

• “Methodological Assistant Overview” on page 2-54

• “Opening the Methodological Assistant ” on page 2-54

• “Assistant Dashboard” on page 2-55

• “Choose a Methodological Assistant” on page 2-59

Methodological Assistant Overview
After a first navigation into the PolySpace Viewer, some simple questions
remain:

• Do all checks need to be reviewed?

• What are the checks to review?

• How many?

• What is the best order?

The Methodological assistant is here to answer to all theses questions: It
helps to select and manage the checks to be reviewed. It selects a “best” subset
and sorts out them. The Assistant mode in the PolySpace Viewer will then
guide through these selected checks.

Opening the Methodological Assistant
To open the assistant:

1 If the PolySpace Viewer is still open, close it.

2 Open the PolySpace Viewer again, then load the same results.

3 Choose “Assistant” mode.

After having loaded the results in “Assistant” mode, PolySpace Viewer
window looks like below:

2-54

Step 3: PolySpace™ Viewer – Exploring Results

Assistant Dashboard
The second line of buttons on the toolbar and the two views just below are the
navigation centre based on the methodological method used in the assistant
mode:

2-55

2 Getting Started

Some other changes can be seen in the viewer:

• Now, in the “Procedural Entities” view the list of files analyzed is sorted by
the methodological assistant used.

• In the bottom right area is the source code view with colored instructions.
Each operation will be checked and sorted by the methodological method
using meaningful color scheme and related diagnostic and in the following
order:

- Red — Assistant browses all errors which occur at every execution.

- Gray — Assistant browses each block of unreachable code depending if
radio button “Skip gray checks” has been ticked or not.

- Orange — Assistant chooses and reviews the “best” unproven operations
-errors that may occur sometimes.

1 Click to navigate to next check.

The PolySpace Viewer is refreshed with the first check selected by the
Methodology of review:

2-56

Step 3: PolySpace™ Viewer – Exploring Results

The Methodological dashboard gives details and allows reviewing the
check. On the selected check, it is possible to mark the fact that it has
been reviewed.

2 Select the radio button box.

3 Enter a comment in the associated edit box on the right.

After, it looks like:

2-57

2 Getting Started

The left part of the dashboard has been updated, and displays some statistics
in three lines:

• The first line gives the number and percentage of remaining checks to
review of the current category. In the previous example, it concerns red
IDP checks.

• The second line gives values in the color category (red, grey and unproven).

• The Last line gives in permanence the Software reliability indicator.

Other buttons in the Methodological dash board allow navigating to previous
check, coming back to current one

and going to next

/ previous

category of reviewed checks selected by the Methodology.

2-58

Step 3: PolySpace™ Viewer – Exploring Results

Choose a Methodological Assistant

and associated levels
have been pre-selected by PolySpace.

The methodology allows selecting the categories of checks to review, the
number for each category and their order depending of a statistical algorithm.

The level (or criterion) defines the number of checks to review by category.
Explicit name have been associated to each criterion like “Fresh code”, “Unit
test” and “Code review”

It is possible to refine a self-created one or define its own Methodology.

1 Select Edit > Preferences in the PolySpace Viewer.

2 Select the Assistant Configuration tab.

2-59

2 Getting Started

3 Create a new configuration set

Define the categories of check to review for each criterion, how many in
each one.

Note You cannot change an existing configuration except by duplication
and refinement.

2-60

Step 3: PolySpace™ Viewer – Exploring Results

Report Generation
When PolySpace performs an analysis, it generates textual files that can be
used to generate Microsoft® Excel® reports.

Note Excel report is an option of PolySpace Desktop and Verifier only
available under license. If you do not currently have a license and would like
to learn more about it, please contact The Mathworks.

These files are located in the results directory
(See ”C:\PolySpace_Results\PolySpace-Doc“ or
“<PolySpaceInstallDir>\Examples\Demo_CPP\PolySpace-Doc”).

All views (except source code) are printable and can be exported to textual or
Excel format (protected by license).

The ”C:\PolySpace_Results\PolySpace-Doc“ directory should contain the
following files:

To generate a report:

1 Open the file called “PolySpace_Macros.xls”, enable macros when asked
and then the following window opens:

2-61

2 Getting Started

2 Click on .

2-62

Step 3: PolySpace™ Viewer – Exploring Results

A file browser opens.

3 Select the file called “New_Project_RTE_View.txt”.

After a few seconds, an Excel file is generated. It contains several
spreadsheets related to the application analyzed.

For example, in “Checks Synthesis” all statistics about checks and colors
are reported in a summary table.

2-63

2 Getting Started

This ends ways of results review.

2-64

Step 4: Launch PolySpace™ Remotely

Step 4: Launch PolySpace™ Remotely

In this section...

“Overview” on page 2-65

“Launching an Analysis” on page 2-65

“Managing Your Remote Analysis: the PolySpace™ Spooler” on page 2-67

“Batch Commands” on page 2-70

“Sharing Analyses Between Accounts” on page 2-72

Overview
This chapter describes the basic steps to launch an analysis in remote.

To do so you need:

• A Queue Manager server (QM) installed.

• Your desktop PC configured with the PolySpace™ Client™ for C/C++
product.

• A networked machine configured with the PolySpace™ Server™ for C/C++
product.

Please see the PolySpace Installation guide (available on the PolySpace
CD-ROM in \Docs\Install or the PolySpace Install Guide Manual) to install
and configure a Client and a Server.

Note Launching an analysis remotely requires a PolySpace Server for C/C++
product and associated license.

Launching an Analysis
To launch PolySpace remotely:

2-65

2 Getting Started

1 Set up an analysis as described in “Step 1: PolySpace™ Client – Setting
Up and Launching an Analysis on a Single Class” on page 2-5, but do not
launch it.

2 Select the Remote analysis checkbox (see next figure).

3 Click to launch the analysis.

The analysis starts and the compilation phase is performed on the desktop
PC. At the end of the “C source verification phase” the analysis is sent to
the Queue Manager server.

4 Click on the Full Log tab. You will have a message like this:

The analysis has been queued with an ID number, and you can follow its
progression using the PolySpace Spooler.

2-66

Step 4: Launch PolySpace™ Remotely

Note If you do not select the “Remote analysis” radio button, the analysis
continues locally.

Managing Your Remote Analysis: the PolySpace™
Spooler
You can check the analysis processes in the queue using the PolySpace™
Spooler.

To manage an analysis in the queue:

1 Open the PolySpace Spooler by either:

• Clicking on the short cut on your desktop PC

• Clicking on the icon

in the menu tab of the launcher.

The PolySpace Spooler appears.

2 Right-click on an analysis to manage it in the queue:

2-67

2 Getting Started

3 Select one of the following options:

• Follow progress — This action lists the associated log file in a Launcher
window. If the analysis is running, you can follow the update of the log
file and associated progress bar in real time on the Launcher window.

• View log file — This action lists the associated log file in a “Command
prompt” window, in which you can the last 100 updated lines of the
log file in real time. This option is only available when the analysis
is running.

• Download results — This action downloads the results of an analysis
onto the client. If the analysis is still running, available results are
downloaded on the client, without disturbing the analysis. The option is
not possible for a “queued” analysis

• Move down in queue — This action reduces the priority of a “queued”
analysis.

• Kill and download results — This action stops the analysis
definitively and the results are downloaded. The status of the analysis
changes from “running” to “aborted”. The analysis remains on the queue.

• Kill and remove from queue — This action stops the analysis
definitively, and the analysis is removed from the queue.

Caution The results will be lost

2-68

Step 4: Launch PolySpace™ Remotely

• Remove from queue — This action removes a “queued”, “aborted“
ora “completed” analysis.

Caution The results will be lost

You can also manage the queue from an administrator point of view using
the Operations menu:

• Select Operations > Purge queue, to purge the entire queue or purge
only completed and aborted analysis (see next figure).

Note The queue manager password is required.

• Select Operations > Change root password, to change the administrator
password.

Note By default this password does not exist.

On a UNIX platform, there is no graphical user interface but a set
of “Batch Commands” on page 2-70 which allow the management of
analyses on the queue. All theses commands begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/psqueue-.

2-69

2 Getting Started

Batch Commands

• “Launching an Analysis in Batch” on page 2-70

• “Managing an Analysis in Batch” on page 2-70

Launching an Analysis in Batch
A set of commands allow you to launch an analysis in batch.

All theses commands begin with the following prefixes:

• Server analysis —
<PolySpaceInstallDir>/Verifier/bin/polyspace-remote-cpp

• Client analysis — polyspace-remote-desktop-cpp

These commands are equivalent to commands with a prefix
<PolySpaceInstallDir>/bin/polyspace-.

For example, polyspace-remote-desktop-cpp -server
[<hostname>:[<port>] | auto] allows you to send a C++ client
analysis remotely.

Note If your PolySpace server is running on Windows®, the batch
commands are located in the /wbin/ directory. For example,
<PolySpaceInstallDir>/Verifier/wbin/polyspace-remote-cpp.exe

Managing an Analysis in Batch
In batch, a set of commands allow the management of analysis in the queue.

On UNIX®, all theses command begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-:

On Windows, these commands begin with the prefix
<PolySpaceCommonDir>/RemoteLauncher/wbin/psqueue-:

2-70

Step 4: Launch PolySpace™ Remotely

• psqueue-download <id> <results dir> — download an identified
analysis into a results directory.

- [-f] force download (without interactivity)

- -admin -p <password> allows administrator to download results.

- [-server <name>[:port]] selects a specific Queue Manager.

- [-v|version] gives release number.

• psqueue-kill <id> — kill an identified analysis.

• psqueue-purge all|ended — remove all or finished analyses in the queue.

• psqueue-dump — gives the list of all analyses in the queue associated to
default Queue Manager.

• psqueue-move-down <id> — move down an identified analysis in the
Queue.

• psqueue-remove <id> — remove an identified analysis in the queue.

• psqueue-get-qm-server — give the name of the default Queue Manager.

• psqueue-progress <id>: give progression of the currently identified and
running analysis.

- [-open-launcher] display the log in the graphical user interface of
launcher.

- [-full] give full log file.

- psqueue-set-password <password> <new password> — change
administrator password.

• psqueue-check-config — check the configuration of Queue Manager.

- [-check-licenses] check for licenses only.

• psqueue-upgrade — Allow to upgrade a client side (cf. PolySpace Install
guide in the <PolySpace Common Dir>/Docs directory).

- [-list-versions] give the list of available release to upgrade.

- [-install-version <version number> [-install-dir
<directory>]] [-silent] allow to install an upgrade in a given
directory and in silent.

2-71

2 Getting Started

Note <PolySpaceCommonDir>/bin/psqueue-<command> -h gives
information about all available options for each command.

Sharing Analyses Between Accounts

• “Analysis-key.text File” on page 2-72

• “Magic Key or Shared Analysis Between Projects” on page 2-73

Analysis-key.text File
From a security point of view, all analysis spooled on a same Queue Manager
are owned by the user who sent the analysis from a specific account. Each
analysis has a unique cryptic key.

The public part of the key is stored in a file analysis-keys.txt associated to
a user account. This file is located in:

• Unix — /home/<username>/.PolySpace

• Windows — C:\Documents and Settings\<username>\Application
Data\PolySpace

The format of the ASCII file is the following (spaces are tabulation):

<id of launching> <server name of IP address> <public key>

where <public key> is a value in the range [0..F]

Example:

1 m120 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786
2 m120 2860F820320CDD8317C51E4455E3D1A48DCE576F5C66BEEF391A9962
8 m120 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

When we make an attempt of management (download, kill and remove, etc.)
on a particular analysis, the Queue Manager will examine this file and find
the associated public key to authenticate the analysis on the server.

2-72

Step 4: Launch PolySpace™ Remotely

If the key does not exist, an error message appears: “key for analysis <ID>
not found”. So sharing an analysis with another user account necessitates
the public key.

Sharing an analysis is quite simple, ask to the owner of the analysis the line
in analysis-key.txt which containing the associated <ID> and put it the line
in your own file. After, it will be able to download the analysis.

Magic Key or Shared Analysis Between Projects
A magic key allows sharing analyses without taking into account the <ID>.
It allows same key for all analysis launched by a user account. The format
is the following:

0 <Server id> <your hexadecimal value>

All analyses spooled will have this key instead of random one. In the same
way, if this kind of key is available in an analysis-key.txt file of another
user, it allows to authorize any operation on any analyses pushed with this
key.

Note It only works for all analysis launched after having put the magic
key in the file. If the analysis has been launched before, the allowed key
associated to the ID will be used for the authentication.

2-73

2 Getting Started

Summary
After having followed each steps of this tutorial, you are now able to launch a
class analysis using the PolySpace™ Client™ for C/C++ product, and explore
some results with PolySpace™ Viewer. All theses command can be performed
locally on your desktop PC or in Client/Server architecture.

You will find more information on advanced options available with our tools
later in this guide.

2-74

3

Analysis Setup

Common Compile errors (p. 3-2) Describes how to use PolySpace™ to
detect compile errors

Dialect Issues (p. 3-8) Describes issues resulting from
different C++ dialects

Link Messages (p. 3-16) Provides examples of link errors

Methodology Using the
Pre-processed .ci Files (p. 3-21)

Describes how to use pre-processed

files to locate compile errors

OS and Target Specifications
(p. 3-26)

Describes supported operating
systems and target processors

Intermediate Language Errors
(p. 3-32)

Describes the log file containing
error messages

Advanced Setup (p. 3-34) Describes how to prepare your code
to streamline orange checks

3 Analysis Setup

Common Compile errors

In this section...

“Includes” on page 3-2

“Specific Keyword or Extended Keyword” on page 3-2

“Initialization of Global Variables” on page 3-7

Includes
As for the C language, access to the standard header files must be provided
when the applications use the standard library.

The original code uses standard header files, but a message can appear:

Error message:

file.cpp", line 1: catastrophic error: could not open source file "iostream.h"

file.cpp:

1 #include "iostream.h"

Use the -I option to include the correct header files, including the header
files of the compiler.

Specific Keyword or Extended Keyword

• “Specific Keyword” on page 3-2

• “Non ANSI® Keywords” on page 3-3

• “Complex Post Preprocessing Command” on page 3-4

• “Perl Regular Expressions Summary” on page 3-5

Specific Keyword
Compilers of specific application are defined theirs owned keyword. A classic
example is the compiler for micro controller as IAR or Keil compiler.

Original code:

3-2

Common Compile errors

keyword.h keyword.cpp

class keyword
{
public:
int far m_val;
keyword (int val);

};

#include keyword.h
keyword::keyword(int val)
{
m_val = 0;

if (val > 10)
m_val = -1;

}

Error message:

Verifying keyword.cpp

"../sources/keyword.h", line 7: error: expected a ";"

int far m_val;

^

"../sources/keyword.cpp", line 6: error: identifier "m_val" is undefined

m_val = 0;

^

2 errors detected in the compilation of "CPP-ALL/SRC/MACROS/keyword.cpp".

You need to use the option -Dto not take accounts these keywords: -D far=

Non ANSI® Keywords
You might have the same error message as for a regular compilation error,
as discussed previously when using some non ANSI® keyword containing
for example @ as first character. But in this case, the problem cannot be
addressed by means of a compilation flag, nor a -include file. In this case, you
need to use the post-preprocessing command.

1 Create a file called ABC.txt, and save it under c:\PolySpace

2 Open it with an ASCII editor, and copy and paste the following text:

#!/bin/sh
sed "s/titi/toto/g" |

3-3

3 Analysis Setup

sed "s/@interrupt//g"

3 In the launcher, specify the absolute path and file name in the
-post-preprocessing-command field using browse button on a Windows®

system.

Note Under Linux®, you must:

• enter the full path, such as /home/poly/working_dir/ABC.txt, and

• make sure this file has execution permissions by typing: chmod 755
ABC.txt.

4 Launch an analysis on the example “my_file.cpp” below, and confirm that
the compilation phase generates no errors.

void main(void)
{@
interrupt // will be removed by the command

int titi; // will be replaced by int toto
int r=0; r++; toto++;
}

5 To confirm that the right transformation has been performed, open
the expanded file “my_file.ci” which is located in the directory
“<results_folder>/CPP-ALL/my_file.ci”

Complex Post Preprocessing Command
If you want to ignore non-compliant keywords such as “far” or 0x followed by an
absolute address, you can use the template described below to deal with them.
Save it under c:\PolySpace\myTpl.pl, and select myTpl.plin the PolySpace™
Launcher using browse button associated to -post-preprocessing-command.
Content of the myTpl.pl file:

#!/usr/bin/perl
###
Post Processing template script
Copyright 1999-2005 PolySpace Technologies.

3-4

Common Compile errors

#
###
Usage from Launcher GUI:
#
1) Linux: /usr/bin/perl PostProcessingTemplate.pl
2) Solaris: /usr/local/bin/perl PostProcessingTemplate.pl
3) Windows: /usr/bin/perl PostProcessingTemplate.pl
#
###
$version = 0.1;
$INFILE = STDIN;
$OUTFILE = STDOUT;
while (<$INFILE>)
{

Remove far keyword
s/far//;
Remove "@ 0xFE1" address constructs
s/\@\s0x[A-F0-9]*//g;
Remove "@0xFE1" address constructs
s/\@0x[A-F0-9]*//g;
Remove "@ ((unsigned)&LATD*8)+2" type constructs
s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;
Convert current line to lower case

$_ =~ tr/A-Z/a-z/;

Print the current processed line
print $OUTFILE $_;

}

Perl Regular Expressions Summary

##
Metacharacter What it matches
##
Single Characters
. Any character except newline
[a-z0-9] Any single character in the set
[^a-z0-9] Any character not in set
\d A digit same as

3-5

3 Analysis Setup

\D A non digit same as [^0-9]
\w An Alphanumeric (word) character
\W Non Alphanumeric (non-word) character
#
Whitespace Characters
\s Whitespace character
\S Non-whitespace character
\n newline
\r return
\t tab
\f formfeed
\b backspace
#
Anchored Characters
\B word boundary when no inside []
\B non-word boundary
^ Matches to beginning of line
$ Matches to end of line
#
Repeated Characters
x? 0 or 1 occurence of x
x* 0 or more x's
x+ 1 or more x's
x{m,n} Matches at least m x's and no more than n x's
abc All of abc respectively
to|be|great One of "to", "be" or "great"
#
Remembered Characters
(string) Used for back referencing see below
\1 or $1 First set of parentheses
\2 or $2 First second of parentheses
\3 or $3 First third of parentheses
###
Back referencing
#
e.g. swap first two words around on a line
red cat -> cat red
s/(\w+) (\w+)/$2 $1/;
#
###

3-6

Common Compile errors

Initialization of Global Variables
When a data member of a class is declared static in the class definition, then
it is a static member of the class. Static data members are initialized and
destroyed outside the class, as they exist even when no instance of the class
has been created.

class Test
{
public:

static int m_number = 0;
};

Error message:

Verifying Test.cpp

"../sources/test.h", line 33: error: data member initializer is not allowed

static int m_number = 0;

^

1 error detected in the compilation of "CPP-ALL/SRC/MACROS/Test.cpp".

Corrected code:

in file Test.h in file Test.cpp

class Test
{
public:
static int m_number;
};

int Test::m_number = 0;

Note Some dialects, other than those supported by PolySpace™ Client™ for
C/C++, accept the default initialization of static data member during the
declaration.

3-7

3 Analysis Setup

Dialect Issues

In this section...

“ISO® versus Default Dialects” on page 3-8

“CFront2 and CFront3 Dialects ” on page 3-10

“Visual Dialects” on page 3-11

“GNU Dialect” on page 3-13

ISO® versus Default Dialects
The 5 common permissiveness options used by PolySpace™ software are
described in this paragraph when using -dialect iso:

Original code (file permissive.cpp):

class B {} ;
class A
{
friend B ;
enum e ;
void f() { long float ff = 0.0 ;}
enum e { OK = 0, KO } ;
};
template <class T>
struct traits
{
typedef T * pointer ;
typedef T * pointer ;
} ;
template<class T>
struct C
{
typedef traits<T>::pointer pointer ;
} ;
int main()
{
C<int> c ;
}

3-8

Dialect Issues

• Using dialect iso, should be: friend class B;

"./sources/permissive.cpp", line 5: error: omission of "class"
is nonstandard

friend B ;

• Using dialect iso,, the line 6 must be removed

"./sources /permissive.cpp", line 6: error: forward declaration
of enum type
is nonstandard

enum e ;
^

• Using dialect iso, line 7 should be: double ff = 0.0;

"./sources/permissive.cpp", line 7: error: invalid combination
of type
specifiers

long float ff = 0.0 ;
^

• Using dialect iso, line 14 needs to be removed

"./sources/permissive.cpp", line 14: error: class member typedef
may not be
redeclared

typedef T * pointer ; // duplicate !
^

• Using dialect iso, line 21 needs to be changed by: typedef typename
traits<T>::pointer pointer

"./sources/permissive.cpp", line 21: error: nontype
"traits<T>::pointer [with T=T]" is not a type name

typedef traits<T>::pointer pointer ;

All these error messages will disappear if the –dialect default option is
activated.

3-9

3 Analysis Setup

CFront2 and CFront3 Dialects
As mentioned at the beginning of this section, cfront2 and cfront3 dialects
were already being used before the publication of the ANSI® C++ standard in
1998. Nowadays, these two dialects are used to compile legacy C++ code.

If the cfront2 or cfront3 options are not selected, you may get the common
error messages below.

Variable Scope Issues
The ANSI C++ standard specifies that the scope of the declarations occurring
inside loop definition is local to the loop. However some compilers may
assume that the scope is local to the bloc ({ }) which contains the loop.

Original code:

for (int i = 0; i < maxval; i++) {...}
if (i == maxval) {
...

}

Error message:

Verifying Test.cpp
"../sources/Test.cpp", line 26: error: identifier "i" is undefined

if (i == maxval) {
^

Note This kind of construction has been allowed by compilers until 1999,
before the Standard became more strict.

“bool” Issues
Standard type may need to be turned into boolean type

Original code:

enum bool
{

3-10

Dialect Issues

FALSE=0,
TRUE

};
class CBool
{
public:
CBool ();
CBool (bool val);
bool m_val;

};

Error message:

Verifying C++ sources ...
Verifying CBool.cpp
"../sources/CBool.h", line 4: error: expected either a definition
or a tag name
enum bool

^

Visual Dialects
The following messages will appear if the compiler is based on a visual dialect
(including visual8).

Import Directory
When a Visual application uses #import directives, the Visual C++ compiler
generates a header file which contains some definitions. These header files
have a .tlh extension and tPolySpace C++ requires the directory containing
those files.

Original code:

#include "stdafx.h"
#include <comdef.h>
#import <MsXml.tlb>
MSXML::_xml_error e ;
MSXML::DOMDocument* doc ;
int _tmain(int argc, _TCHAR* argv[])
{

3-11

3 Analysis Setup

return 0;
}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not
open source file
"./MsXml.tlh"
#import <MsXml.tlb>

^

The Visual C++ compiler generates these files in its “build-in” directory
(usually Debugor Release). Therefore, in order to provide those files, the
application needs to be built first. Then, the option -import-dir=<build
directory> must be set with a correct path folder.

pragma Pack
Using a different value with the compile flag (#pragma pack) can lead to a
linking error message.

Original code:

test1.cpp type.h test2.cpp

#pragma pack(4)

#include "type.h"

struct A
{
char c ;
int i ;

} ;

#pragma pack(2)

#include "type.h"

Error message:

Pre-linking C++ sources ...

"../sources/type.h", line 2: error: declaration of class "A" had

a different meaning during compilation of "CPP-ALL/SRC/MACROS/test1.cpp"

(class types do not match)

struct A

^

detected during compilation of secondary translation unit

3-12

Dialect Issues

"CPP-ALL/SRC/MACROS/test2.cpp"

The option -ignore-pragma-pack is mandatory to continue the analysis.

GNU Dialect
The GNU dialect is based on GCC 3.4. The GNU dialect supports the keyword
__asm__ __volatile__, which is used to support inline functions. For
example, the <sys/io.h> header includes many inline functions. The GNU
dialect supports these inline functions.

PolySpace software supports the following GNU elements:

• Variable length arrays:

void f(int n) { char tmp[n] ; ... }

• Anonymous structures:

union A { struct { double x ; double y ; double z} ;
double tab[3] ; } a ; assert(&(a.tab[0]) = &(a\ .x)) ;

• All other syntactic constructions allowed by GCC, except as noted below

Partial Support
Zero length arrays have the same support as in Visual Mode. They are
allowed when used through a pointer, but not in a local variable.

Syntactic Support Only
PolySpace software provides syntactic support for the following options, but
not semantic support:

• __attribute__(...) is allowed but generally not taken into account.

• No special stubs are computed for predeclared functions such as
__builtin_cos, __builin_exit, and __builtin_fprintf).

Not Supported
The following options are not supported:

3-13

3 Analysis Setup

• The keyword __thread

• Statement expressions:

int i = ({ int tmp ; tmp = f() ; if (tmp > 0) { tmp = 0 ; } tmp ; })

• Taking the address of a label:

{ L : void *a = &&L ; goto *a ; }

• General C99 features supported by default in GCC, such as complex built-in
types (__complex__, __real__, etc.).

• Extended designators initializer:

struct X { double a; int b[10] } x = { .b = { 1, [5] =2 },
.b[3] = 1, .a = 42.0 };

• Nested functions

Examples

Example 1: _asm_volatile_ keyword
In the following example, for the inb_p function to correctly manage the
return of the local variable _v, the __asm__ __volatile__ keyword is used as
follows:

extern inline unsigned char
inb_p (unsigned short port)
{

unsigned char _v;

__asm__ __volatile__ ("inb %w1,%0\noutb %%al,$0x80":"=a"
(_v):"Nd" (port));

return _v;
}
...

Example 2: Anonymous Structure

The following example shows an unnamed structure supported by GNU:

3-14

Dialect Issues

class x
{
public:

struct {
unsigned int a;
unsigned int b;
unsigned int c;
};
unsigned short pcia;
enum{
ea = 0x1,
eb = 0x2,
ec = 0x3
};

struct {
unsigned int z1;
unsigned int z2;
unsigned int z3;
unsigned int z4;
};

};

int main(int argc, char *argv[])
{

class x myx;

myx.a = 10;
myx.z1 = 11;
return(0);

}

3-15

3 Analysis Setup

Link Messages

In this section...

“STL Library C++ Stubbing Errors ” on page 3-16

“Lib C Stubbing Errors” on page 3-17

STL Library C++ Stubbing Errors
PolySpace™ software provides an efficient implementation of all functions
in the Standard Template Library. The Standard Template Library (STL)
and platforms may have different declarations and definitions, otherwise
the error messages below appears.

Original code:

#include <map>

struct A
{
int m_val;

};

struct B
{
int m_val;
B& operator=(B &) ;

};

typedef std::map<A, B> MAP ;

int main()
{
MAP m ;
A a ;
B b ;

m.insert(std::make_pair(a,b)) ;
}

3-16

Link Messages

Error message:

Verifying template.cpp

"<Product>/Verifier/cinclude/new_stl/map", line 205: error: no operator

"=" matches these operands

operand types are: pair<A, B> = const map<A, B, less<A>>::value_type

{ volatile int random_alias = 0 ; if (random_alias) *((pair<Key, T> *)

_pst_elements) = x ; } ; // read of x is done here

detected during instantiation of

"pair<__pst__generic_iterator<bidirectional_iterator_tag, pair<const Key,

T>>, bool> map<Key, T, Compare>::insert(const map<Key, T, Compare>::

value_type &) [with Key=A, T=B, Compare=less<A>]" at line 23 of "/cygdrive/

c/_BDS/Test-Polyspace/sources/template.cpp"

Using the option -no-stub-stlavoid this error message. Then, you need to
add the directory containing definitions of own STL library as a directory to
include using option -I.

The preceding message can also appear with the directory names:

"<Product>/cinclude/new_stl/map", line 205: error: no operator "="
matches these operands

"<Product>/cinclude/pst_stl/vector", line 64: error: more than one
operator "=" matches these operands:

Be careful, that other compile or linking troubles can appear with your own
template definitions.

Lib C Stubbing Errors

Extern C Functions
Some functions may be declared inside an extern “C” { } bloc in some files but
not in others. In this case, the linkage is different which causes a link error,
as it is forbidden by the ANSI standard.

Original code:

extern "C" {

3-17

3 Analysis Setup

void* memcpy(void*, void*, int);
}
class Copy
{
public:
Copy() {};
static void* make(char*, char*, int);

};
void* Copy::make(char* dest, char* src, int size)
{
return memcpy(dest, src, size);

}

Error message:

Pre-linking C++ sources ...

"<results_dir>/CPP-ALL/CPP-STUBS/__polyspace__stdstubs.c", line 2996: error:

declaration of function "memcpy" is incompatible with a declaration in another

translation unit (parameters do not match)

the other declaration is at line 4 of "/sources/Copy.cpp"

extern void * __pst_profile__memcpy (void *s1, const void *s2, size_t n) ;

extern "C" void * memcpy (void *s1, const void *s2, size_t n)

^

detected during compilation of secondary translation unit "CPP-ALL/

SRC/MACROS/__polyspace__stdstubs.c"

The function memcpy style=’font-family:Arial’>is declared as an external "C"
function and as a C++ function. It causes a link problem. Indeed, function
management behavior differs whether it relates to a C or a C++ function.

When such error happens, the solution is to homogenize declarations, i.e. add
“extern “C” { }” around previous listed C functions.

Another solution consists in using permissive option -no-extern-C. It will
remove all declaration extern "C"

Standard Stubs
It could also happen that the compiler (used) does not provide exact ANSI
prototypes for a given C function of the standard libC library.

3-18

Link Messages

Original code:

#include <signal.h>
extern "C" {
extern void (*signal (int, void (*)(int)))(int);

}
class Copy
{
public:
Copy() {};

};

Error message:

Pre-linking C++ sources ...
c:\results\CPP-ALL\CPP-STUBS__polyspace__stdstubs.c:891: error:
a value of type "void (*) (...) C" cannot be used to initialize
an entity of type "_polyspace_signal_function_type"
_polyspace_signal_function_type res = (void (*)(...))(-1);

^
c:\results\CPP-ALL\CPP-STUBS__polyspace__stdstubs.c:922: error:
a value of type "void (*) (...) C" cannot be assigned to an entity
of type "_polyspace_signal_function_type"

res = (void (*)(...))1;
^

In the previous example and associated error message, a problem occurs in
the __polyspace__stdstubs.cfile. At line 891 of this file, located in <results
directory>/CPP-ALL/SRC, the prototype of signal function does not match the
one given in the original code. In this example, the code to analyze does not
follow the Standard ANSI function prototype on function signal.

It is possible to use compiler prototypes by deactivating standard
prototype provided by ANSI. To do so, you have to add the flag
POLYSPACE_NO_STANDARD_STUBS to the analysis using -D option: -D
POLYSPACE_NO_STANDARD_STUBS. All functions declared in assert.h,
ctype.h, errno.h, locale.h, math.h, setjmp.h, signal.h, stdio.h, stdarg.h,
stdlib.h, string.h and time.h will be taken into account.

3-19

3 Analysis Setup

Functional Limitations on Some of Stubbed Standard ANSI
Functions

• signal.h is stubbed with functional limitations: ’signal’ and ’raise’ functions
do not follow the associated functional model. Even if the function raise
is called, the stored function pointer associated to the signal number is
not called.

• No jump is performed even if the ’setjmp’ and ’longjmp’ functions are called.

• errno.h is partially stubbed. Some math functions, for which PolySpace
uses built-in code, do no set errno but instead generate a red error when a
range or domain error occurs (see examples with NTC checks).

You can also use the compile option
POLYSPACE_STRICT_ANSI_STANDARD_STUBS (-D flag) which will only
deactivate extensions to ANSI C standard libC. Functions bzero, bcopy, bcmp,
chdir, chown, close, fchown, fork, fsync, getlogin, getuid, geteuid, getgid,
lchown, link, pipe, read, pread, resolvepath, setuid, setegid, seteuid, setgid,
sleep, sync, symlink, ttyname, unlink, vfork, write, pwrite, open, creat,
sigsetjmp, __sigsetjmp and siglongjmpare concerned.

3-20

Methodology Using the Pre-processed .ci Files

Methodology Using the Pre-processed .ci Files

In this section...

“Overview” on page 3-21

“Example of ci File” on page 3-21

“Methodology Guide” on page 3-23

Overview
In the preceding paragraphs, common types of compile or linking errors
messages have been detailed. They are associated to C++ dialects, or specific
options used by the dialect (for instance Microsoft Visual C++ with the option
-import-dir).

Nevertheless, sometimes the error messages are not sufficient to find the
cause of problems. Indeed they do not correspond to common error messages
listed above.

PolySpace, as others compilers, transforms a source code to
a pre-processed code. These files are located in the folder:
<results directory>/CPP-ALL/SRC/MACROS or <results
directory>/ALL/SRC/MACROS. They have a .ciextension and they
will help to understand and find precisely the error problem.

Example of ci File
A *.ci file is a copy of original file containing whole header files inside a
unique file:

• compile flags activate some parts of code,

• macro commands are expanded,

• arguments which are described as “#define xxx”, are replaced by their
owned definition,

• etc.

3-21

3 Analysis Setup

Extension.cpp Extension.h

#include "Extension.h"

Extension::Extension(int val)

{

m_val = 0;

ABS(val);

if (val > MAX_VALUE)

m_val = -1;

}

#ifdef _DEBUG

void Extension::message(char*) {}

#else

void print(char*) {}

#endif

#define MAX_VALUE 10

#define ABS(x) ((x)<0?(x):-(x))

class Extension

{

public:

int m_val;

Extension(int val);

#ifdef _DEBUG

void message(char*);

#else

void print(char*);

#endif

};

The associated file Extension.ciuses the compile flag _DEBUG:

1 "../sources/extension.cpp"
1 "<Product>/Verifier/cinclude/polyspace_std_decls.h" 1

1 "../sources/extension.cpp" 2
1 "../sources/extension.h" 1
class Extension
{
public:
int m_val;
Extension(int val);

message(char*); // _DEBUG activates the message member function

};

2 "../sources/extension.cpp" 2

Extension::Extension(int val)

3-22

Methodology Using the Pre-processed .ci Files

{
m_val = 0;
((val)<0?(val): -(val)); // EXPANDED MACRO ABS

if (val > 10) // MAX_VALUE REPLACED BY 10
m_val = -1;

}

void Extension::message(char*) {}

Analyzing these files with the compile flag -D _DEBUG expands the code fully
and may help to find the problems quickly.

Methodology Guide
This guide is designed to help understanding errors messages, as well as the
differences between your compiler and PolySpace:

1 Check whether the compile error messages come from a dialect problem.

2 Check whether Verify that linking error messages are related or not to:

• A C++ Stubbing error which could be resolved by an option (like
-no-stl-stubs)

• C-Stubbing error which could be resolved by an option or a
compilation flag like POLYSPACE_NO_STANDARD_STUBS or
POLYSPACE_STRICT_ANSI_STANDARD_STUBS

3 Check the pre-processed *.ci files to see the expanded files. Looking at the
pre-processed code can help to find errors faster.

Example with these original codes:

3-23

3 Analysis Setup

Child1.c Child2.c Test.h

#define DEBUG

#include "Test.h"

class Child1 : public Test

{

public:

Child1();

Child1(int val);

void search(int val);

};

#undef DEBUG

#include "Test.h"

class Child2 : public Test

{

public:

Child2();

Child2(int val);

void qshort(int val);

protected:

int m_status;

};

class Test

{

public:

Test();

Test(int val);

int getVal();

void setVal(int val);

#ifdef DEBUG

void algorithm(int val,

int max);

#endif

private:

int m_val;

};

Error message:

Pre-linking C++ sources ...
"../sources/test.h", line 4: error: declaration of function
"Test::Test(const Test &)" does not match function
"Test::algorithm" during compilation of "CPP-ALL/SRC/
MACROS/Child2.cpp" (one may have been removed due to #define)

class Test
^

detected during compilation of secondary translation unit
"CPP-ALL/SRC/MACROS/Child2.cpp"

In this example it is clear that DEBUG is defined in child1.c but not in
child2.c which creates two different definition of the class test.

The solution can also come up by comparing the two *.ci files:

3-24

Methodology Using the Pre-processed .ci Files

Test.ci Child2.ci

....

1 "../sources/Test.cpp" 2

1 "../sources/test.h" 1

class Test

{

public:

Test();

Test(int val);

int getVal();

void setVal(int val);

void algorithm(int val, int max);

private:

int m_val;

};

2 "../sources/Test.cpp" 2

....

....

1 "../sources/Child2.cpp" 2

1 "../sources/Child2.h" 1

1 "../sources/test.h" 1

class Test

{

public:

Test();

Test(int val);

int getVal();

void setVal(int val);

private:

int m_val;

};

2 "../sources/Child2.h" 2

....

Looking at the pre-processed code can help to find errors faster.

3-25

3 Analysis Setup

OS and Target Specifications

In this section...

“List of Predefined Compilation Flags” on page 3-26

“Target Specifications” on page 3-29

“Generic/Custom Target” on page 3-30

List of Predefined Compilation Flags
The following table shown for each –OS-target, the list of compilation flags
defined by default, including pre-include header file (see also –include):

-OS-target Compilation flags -include file Minimum set of options

Linux -D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D__STL_CLASS_PARTIAL_
SPECIALIZATION
-D__GNU_SOURCE
-D__STDC__ -D__ELF__
-Dunix -D__unix
-D__unix__ -Dlinux
-D__linux -D__linux__
-Di386 -D__i386
-D__i386__ -Di686
-D__i686 -D__i686__
-Dpentiumpro
-D__pentiumpro
-D__pentiumpro__

<product_dir>/
cinclude/
pst-linux.h

polyspace-[desktop-]cpp
-OS-target Linux \

-I <product_dir>/include/
include-linux \

-I <product_dir>/include/
include-linux/next Where
the PolySpace product has
been installed in the directory
<product_dir>

3-26

OS and Target Specifications

-OS-target Compilation flags -include file Minimum set of options

vxWorks -D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D__STL_CLASS_PARTIAL_
SPECIALIZATION
-DANSI_PROTOTYPES
-DSTATIC=
-DCONST=const
-D__STDC
-D__GNU_SOURCE
-Dunix
-D__unix
-D__unux__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4
-D__SVR4

<product_dir>/
cinclude/
pstvxworks. h

polyspace-[desktop-]cpp
\ -OS-target vxworks
\ -I /your_path_to/
Vxworks_include_directories

visual
/visual6

-D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__STRICT_ANSI__
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D_POSIX_SOURCE
-D__STL_CLASS_PARTIAL_
SPECIALIZATION

<product_dir>/
cinclude/
pstvisual. h

3-27

3 Analysis Setup

-OS-target Compilation flags -include file Minimum set of options

Solaris -D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D__STL_CLASS_PARTIAL_
SPECIALIZATION
-D__GNU_SOURCE
-D__STDC
-D__GCC_NEW_VARARGS__
-Dunix
-D__unix
-D__unux__
-Dsparc
-D__sparc
-D__sparc__
-Dsun
-D__sun
-D__sun__
-D__svr4
-D__SVR4

If PolySpace runs on a Linux
machine:

polyspace-[desktop-]cpp \
-OS-target Solaris \
-I
/your_path_to_solaris_include

If PolySpace runs on a Solaris
machine:

polyspace-cpp \
-OS-target Solaris \
-I /usr/include

no-predefined-OS-D__SIZE_TYPE__=unsigned
-D__PTRDIFF_TYPE__=int
-D__STRICT_ANSI__
-D__inline__=inline
-D__signed__=signed
-D__gnuc_va_list=va_list
-D_POSIX_SOURCE
-D__STL_CLASS_PARTIAL_
SPECIALIZATION

polyspace-[desktop-]cpp \
-OS-target
no-predefined-OS \
-I /your_path_to/
MyTarget_include_directories

Note This list of compiler flags is written in every log file.

3-28

OS and Target Specifications

Target Specifications
PolySpace™ products take the type of CPU used in the target environment
into account during verification. This determines various characteristics of
data representation such as data sizes, addressing, etc. These are essential to
correctly determine some types of errors, such as overflows.

PolySpace products support some of the most commonly used processors as
listed in the table below. Even if the processor used in a target environment is
not explicitly mentioned, it is safe to specify one from the table which shares
the same listed characteristics.

Target char short int long long
long

float double long
double

ptr char is Endian ptr diff
type

sparc 8 16 32 32 64 32 64 128 32 signed Big int, long

i386 8 16 32 32 64 32 64 96 32 signed Little int, long

c-167 8 16 16 32 32 32 64 64 16 signed Little int

m68k /
ColdFire1

8 16 32 32 64 32 64 96 32 signed Big int, long

powerpc 8 16 32 32 64 32 64 128 32 unsigned Big int, long

The following table describes target processors that are not fully supported
by PolySpace products. Nevertheless, the target processor mentioned in
column “Nearest Processor” can be chosen for a Verifier analysis, knowing
that information in red is not compatible in both target processors.

Target char short int long long
long

float double long
double

ptr char is ptr diff
type

Nearest
target
processor

tms470r1x 8 16 32 32 N/A 32 64 64 32 signed int,
long

i386

mpc555 8 16 32 32 64 32 64 64 32 signed int,
long

i386

hc12 8 16 16 32 32 32 32 32 16 signed int c-167

1. The M68k family (68000, 68020, etc.) includes the “ColdFire®” processor

3-29

3 Analysis Setup

Generic/Custom Target
The size of some basic types is configurable (-int-is-32bits option, compiler
memory model option, near/far pointer syntax)

The alignment of some basic types with arrays and structures is configurable
(depending on the compiler implementation or optimization options). For
example, when the alignment of basic types within an array or structure is
always 8, it implies that the storage assigned to arrays and structures is
strictly determined by the size of the individual data objects (without fields
and end padding).

The sign of char is configurable using -default-sign-of-char [signed|unsigned]

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigned Big

alignment 8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

ST9 (GNU® C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big

alignment 8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 64 64 16 unsigned Big

alignment 8 16 16 16 16 16 16 16 16 N/A N/A

3-30

OS and Target Specifications

Hitachi H8/300H, H8S, H8C, H8/Tiny

Hitachi
H8/300H,
H8S,
H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/
32

32 64 32 64 64 32 unsigned Big

alignment 8 16 32/
16

32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

3-31

3 Analysis Setup

Intermediate Language Errors
The analysis log can sometimes indicate that a red error has been detected
in the previous phase, and that the analysis has therefore stopped. If no
graphical result is provided, the errors and their locations are listed at the
end of the log file. To find them, you can scroll through the analysis log file
starting at the end and working backwards.

Note This example only explains where to find the error list. Their meaning
and the error messages themselves are detailed in the next section.

The log file may be similar to this one:

**** C++ to intermediate language translation 14 (P_PT) took 2real,
0.5u +1s (0.1gc)
**** C++ to intermediate language translation 15 (P_IL)
* Set of cloned functions : {operator_delete(void*)}

--
1 User Program Errors:
* certain failure of correctness condition [non-initialized local
variable] file stubbing.cpp line 43 column 46
Please correct the program and restart the verifier.
--

**** C++ to intermediate language translation 15 (P_IL) took 32.7real,
10.2u + 19.5s (0.2gc)
**** C++ to intermediate language translation 16 (P_IPF)
**** C++ to intermediate language translation 16 (P_IPF) took 0.3real,
0.1u + 0.1s
* assigns: 63% reduction
* asserts: 33% reduction
* total : 71% reduction
**

*** C++ to intermediate language translation done

**

3-32

Intermediate Language Errors

Ending at: Oct 6, 2005 18:18:0
User time for iabc-c2if: 65real, 14u + 27.8s

3-33

3 Analysis Setup

Advanced Setup

In this section...

“Reduce Oranges Step by Step” on page 3-34

“Approximations Made by PolySpace” on page 3-47

“Variables” on page 3-54

“Types Promotion” on page 3-58

“Built-in Functions” on page 3-61

Reduce Oranges Step by Step
Although PolySpace is effective and straightforward to launch with the
minimum of effort, you may find that some applications would benefit from
some code preparation in order to streamline the job of working through the
resulting orange checks. There are four primary approaches which may be
adopted in isolation or in combination:

• Apply some recommended coding rules. This is the most efficient means
to reduce oranges.

• Implement manual stubbing of previously missing (and therefore
automatically stubbed) functions.

• Specify call sequences with care.

• Constrain some data assignments. Conventional testing analyses a single
set of data, whereas PolySpace can analyze your module for problems
by taking into account all possible data values. If the range of possible
values is specified more precisely than the default “full range” approach,
then there will be less “noise” in the form of orange checks resulting from
“impossible” values.

The following examples show how the selectivity can be improved by each
of these four means.

• “Vary the Precision Level” on page 3-35

• “Apply Manual Stubbing” on page 3-36

3-34

Advanced Setup

Since increasing the selectivity can bring any of the following benefits - more
red, more grey, or readable orange - the following examples will give one
example of each. There is no implied link between the approach taken to
improve selectivity in an example, and the particular way the improvement
manifests itself.

Vary the Precision Level
One way to affect precision is to select the algorithm that will be used
to model the cloud of points. The exact method of modelling is managed
internally, but you can influence it by selecting the -quick, -O0, -O1, -O2 or
-O3 precision level.

The methods used by Verifier to represent the data internally are reflected in
the level of precision to be seen in the results. As illustrated below, the same
orange check which results from a low precision analysis will become green
when analyzed at a higher precision.

3-35

3 Analysis Setup

Vary the Precision Rate

Apply Manual Stubbing
The default behavior of PolySpace is to automatically stub missing functions
members in accordance with their prototypes. If the function takes a pointer
as an argument, PolySpace assumes that the stub can write into the contents
of this pointer. This default behavior avoids the occurrence of red errors as the
result of incomplete code sets. However, stubbing which accurately reflects
the behavior of the missing code will allow PolySpace to show more red and
grey code, rather than orange checks.

The adopted approach to stubbing can have a significant influence on the
speed and precision of your analysis, and there are occasions when automatic
stubbing will not provide an adequate representation of the code it represents
-with regards to both missing functions and assembly instructions.

3-36

Advanced Setup

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system. If a function is supposed to return an integer, the
default automatic stubbing will stub it as returning all values in the full
type of an integer.

It will reduce the cloud of points and therefore increase the precision if a
restricted range is specified instead of the full range. Nevertheless, it is not
necessary to write the exact code depending on complicated algorithm, and an
interpolation between 4 parameters; only a quick stub is required, as shown
in the following example:

with volatile and assert with assert, and without
volatile

without assert, without
volatile, without "if"

int stub(void)

{

volatile int random;

int tmp;

tmp = random;

assert(tmp>=1 && tmp<=10);

return tmp;

}

int other_func(void);

int stub(void)

{

int tmp;

tmp= other_func();

assert(tmp>=1 && tmp<=10);

return tmp;

}

int other_func(void);

int stub(void)

{

int tmp;

do {tmp= other_func();}

while (tmp<1 || tmp>10);

return tmp;

}

In the following paragraph, procedure_to_stub can represent either procedure
or a sequence of assembly instructions which would be automatically stubbed
in the absence of a manual stub. (Please refer to the assembly code options).

Stubs do not need to model the details of the functions or procedures involved.
They only need to represent the effect that the code might have on the
remainder of the system.

Consider procedure_to_stub, If it represents:

• A timing constraint (such as a timer set/reset, a task activation, a delay, or a
counter of ticks between two precise locations in the code) then you can stub
it to an empty action (void procedure(void)). PolySpace needs no concept of
timing since it takes into account all possible scheduling and interleaving of

3-37

3 Analysis Setup

concurrent execution. There is therefore no need to stub functions that set
or reset a timer. Simply declare the variable representing time as volatile.

• An I/O access: maybe to a hardware port, a sensor, a read/write of a file,
a read of an EEPROM, or a write to a volatile variable.There is no need
to stub a write access. If you wish to do so, simply stub a write access to
an empty action (void procedure(void)). Stub read accesses to "read all
possible values (volatile)".

• A write to a global variable. In this case, you may need to consider which
procedures or functions write to it and why. Do not stub the concerned
procedure_to_stub if:

- The variable is volatile;

- The variable is a task list. Such lists are accounted for by default because
all tasks declared with the -task option are automatically modelled as
though they have been started. Write a procedure_to_stub by hand if

- The variable is a regular variable read by other procedures or functions.

- A read from a global variable: If you want PolySpace to detect that it is a
shared variable, you need to stub a read access. This is easily achieved
by copying the value into a local variable.

In general, follow the Data Flow and remember that:

• PolySpace only cares about the C code which is provided;

• PolySpace need not be informed of timing constraints because all possible
sequencing is taken into account;

• You can refer to execution hypotheses made by PolySpace for a complete
list of constraints.

Example

The following example shows a header for a missing function (which might
occur, for example, if the code is a subset of a project.) The missing function
copies the value of the src parameter to dest so there would be a division by
zero - a run-time error - at run time.

void main(void)
{

3-38

Advanced Setup

a = 1;
b = 0;
a_missing_function(&a, b);
b = 1 / a;

}

By relying on Verifiers default stub, the division is shown with an orange
warning because a is assumed to be anywhere in the full permissible integer
range (including 0). If the function was commented out, then the division
would be a green "/ ". A red "/ " could only be achieved with a manual stub.

Default Stubbing Manual Stubbing Function Ignored

void main(void)

{

a = 1;

b = 0;

a_missing_function(&a,

b);

b = 1 / a;

// orange division

}

void a_missing_function

(int *x, int y;)

{ *x = y; }

void main(void)

{

a = 1;

b = 0;

a_missing_function(&a,

b);

b = 1 / a;

// red division

void a_missing_function

(int *x, int y;)

{ }

void main(void)

{

a = 1;

b = 0;

a_missing_function(&a,

b);

b = 1 / a;

// green division

By relying on Verifiers default stub, the assembly code is ignored and the
division " /" is green. The red division "/" could only be achieved with a
manual stub.

Summary. Stub manually: to gain precision by restricting return values
generated by automatic stubs; to deal with a function which writes to global
variables.

Stub automatically in the knowledge that no run-time error will be ever
introduced by automatic stubbing; to minimize preparation time.

• “Examples: Specification” on page 3-40

• “Colored Source Code Example” on page 3-41

3-39

3 Analysis Setup

• “Specify the Call Sequence” on page 3-42

• “Constraint for Data” on page 3-43

• “Recoding of Some Specific Functions” on page 3-45

Examples: Specification. The following examples consider the pros and
cons of manual and automatic stubbing.

Here is the first example:

typedef struct _c {
int cnx_id;
int port;
int data;
} T_connection ;

int Lib_connection_create(T_connection *in_cnx) ;
int Lib_connection_open (T_connection *in_cnx) ;

File: connection_lib Function: Lib_connection_create

param in None

param in/out in_cnx all fields might be changed in case of a success

returns int 0 : failure of connection establishment

1 : success

Note Default stubbing is suitable here.

Here are the reasons why:

• The content of the in_cnx structure might be changed by this function.

• The possible return values of 0 or 1 compared to the full range of an integer wont have much
impact on the Run Time Error aspect. It is unlikely that the results of this operation will
be used to compute some mathematic algorithm. It is probably a Boolean status flag and if
so is likely to be stored and compared to 0 or 1. The default stub would therefore have no
detrimental effect.

3-40

Advanced Setup

File: connection_lib Function: Lib_connection_open

param in T_connection
*in_cnx

in_cnx->cnx_id is the only parameter used
to open the connection, and is a read-only
parameter.

cnx_id, port and data remain unchanged

param in/out None

returns int 0 : failure of connection establishment

1 : success

Note Default stubbing works here but manual stubbing would give more benefit.

Here are the reasons why:

• For the return value, default stubbing would be applicable as explained in the previous
example.

• Since the structure is a read-only parameter it will be worth stubbing it manually to
accurately reflect the behavior of the missing code. Benefits: PolySpace Desktop will find
more red and grey code

Note Even in the examples above, it concerns some C code like; stubs of
functions members in classes follow same behavior.

Colored Source Code Example.

void send_message(T *);
void main(void)

{
int i;
T x = {10, 20};

send_message(&x);
i = x.b /x.a; // orange with the default stubbing
}

3-41

3 Analysis Setup

Suppose that it is known that send_message does not write into its argument.
The division by x.a will be orange if default stubbing is used, warning of
a potential division by zero. A manual stub which accurately reflects the
behavior of the missing code will result in a green division instead, thus
increasing the selectivity.

Manual stubbing examples for send_message:

void send_message(T *) {}

In this case, an empty function would be a sound manual stub.

Specify the Call Sequence. PolySpace Desktop analyses every function
in any order. This means that in some particular situations, a function “f”
might be called before a function “g”. In the default usage, PolySpace Desktop
assumes that “f” and “g” can be called in any order. If some actions set by “f”
must be executed before “g” is called, writing a main which will call “f” and “g”
in the exact order will bring a higher selectivity.

Colored Source Code Example

With the default launching mode of PolySpace Desktop, no problem will be
highlighted on the following example. With a bit of setup, more bugs can
be found.

static char x;
static int y;

void f(void)
{
y = 300;
}

void g(void)
{
x = y; // red or green OVFL?
}

With knowledge of the relative call sequence between g and f: if g is called
first, the assignment is green, otherwise its red. Thanks to the exact call
order, an attempt to place 300 in a char fails, displaying a red.

3-42

Advanced Setup

Example of Call Sequence

void main(void)
{
f()
g()
}

Simply create a main that calls in the desired order the list of functions from
the module.

Constraint for Data.

Default Behavior of Global Data

Initially, consider how PolySpace handles the analysis of global variables.

There is a maximum range of values which may be assigned to each variable
as defined by its type. By default, PolySpace assigns that full range for each
global variable, ensuring that a meaningful analysis of such a variable can
take place even when the functions that write to it are not included. If a
range of values was not considered in these circumstances, such a variable
would be assumed to have a value of zero throughout.

This default launching mode is often adequate, but it is sometimes useful to
specify that the range of values which may be assigned to some variables
is to be limited to what is appropriate on a functional level. These ranges
will be propagated to the whole call tree, and hence will limit the number of
“impossible values” which are considered throughout the analysis.

This thinking does not just apply to global variables; it is equally appropriate
where such a variable is passed as a parameter to a function, or where return
values from stubbed functions are under consideration.

To some extent, the effectiveness of this technique is limited by compromises
made by PolySpace to deal with issues of code complexity. For instance, it
cannot be assumed that all of these ranges will be propagated throughout
all function calls. Sometimes, perhaps as a result of complex function
interactions or constructions where PolySpace is known to be imprecise, the

3-43

3 Analysis Setup

potential value of a variable will assume its full “type” range despite this
technique having been applied.

Constraining the Data

PolySpace experience is that restricting such as global variables to a
functional range is a useful technique. However, it is not always fruitful and
it is therefore recommended only where its application is not too labour
intensive - that is, where its implementation can be automated.

The technique therefore requires

• A knowledge of the variables and the maximum ranges they may take
in practice.

• A data dictionary in electronic format from which the variable names and
their minimum and maximum values can be extracted.

Applying the Technique

To apply the technique:

1 Create the range setting stubs:

a create 6 functions for each type (8,16 or 32 bits, signed and unsigned)

b declare 6 global volatile variables for each type

c write the functions which returns sub-ranges (an example follows)

2 Gather the initialization of all relevant variables into a single procedure

3 Call this procedure at the beginning of the main. This should replace any
existing initialization code.

Integer Example

volatile int tmp;

3-44

Advanced Setup

int polyspace_return_range(int min_value, int max_value)
{
int ret_value;

ret_value = tmp;
assert (ret_value>=min_value && ret_value<=max_value);

return ret_value;
}
void init_all(void)
{
x1 = polyspace_return_range(1,10);
x2 = polyspace_return_range(0,100);
x3 = polyspace_return_range(-10,10);
}

void main(void)
{
init_all();

while(1)
{
if (tmp) function1();
if (tmp) function2();
// ...
}

}

Recoding of Some Specific Functions. Once data ranges have been
specified (above), it may be beneficial to recode some functions in support
of them.

Sometimes, perhaps as a result of complex function interactions or
constructions where PolySpace is known to be imprecise, the potential value of
a variable will assume its full “type” range data ranges having been restricted.
Recoding those complex functions will address this issue.

Identify in the modules:

• API which read global variables through pointers

3-45

3 Analysis Setup

Replace this API:

typedef struct _points {

int x,y,nb;

char *p;

} T;

#define MAX_Calibration_Constant_1 7

char Calibration_Constant_1[MAX_CALIB_1] = { 1, 50, 75, 87, 95, 97, 100} ;

T Constant_1 = { 0, 0,

MAX_Calibration_Constant,

&calibration_constant_1[0] } ;

int read_calibration(T * in, int index)

{

if ((index <= in->nb) && (index >=0)) return in->p[index];

}

void interpolation(int i)

{

int a,b;

a= read_calibration(&Constant_1,i);

}

With this one:

char Constant_1 ;

#define read_calibration(in,index) *in

void main(void)
{
Constant_1 = polyspace_return_range(1, 100);
}

void interpolation(int i)
{
int a,b;

a= read_calibration(&Constant_1,i);

3-46

Advanced Setup

}

• Points in the source code which expand the data range perceived by
PolySpace

• Functions responsible for full range data, as shown by the “Value on
assignment” (voa.) feature.

if direct access to data is responsible, define the functions as macros.

#define read_from_data(param) read_from_data##param

int read_from_data_my_global1(void)
{ return [a functional range for my_global1]; }

Char read_from_data_my_global2(void)
{ }

• stub complicated algorithms, calibration read accesses and API functions
reading global data - as usual. For instance, if an algorithm is iterative -
stub it.

• variables

- where the data range held by each element of an array is the same,
replace that array with a single variable.

- where the data range held by each element of an array differs, separate
it into discrete variables.

Approximations Made by PolySpace

• “Volatile Variables” on page 3-48

• “Structures with Volatile Fields” on page 3-48

• “Absolute Addresses” on page 3-48

• “Pointer Comparison” on page 3-49

• “Left Shift on Negative Variables” on page 3-49

• “Some Bitwise Operators” on page 3-49

• “Bitfields” on page 3-50

• “Float Loops” on page 3-51

3-47

3 Analysis Setup

• “Shared Variables” on page 3-51

• “Array of Function Pointers” on page 3-52

• “Trigonometric Functions” on page 3-52

• “Unions” on page 3-53

• “Loop Exit Conditions” on page 3-54

• “Constant Pointer” on page 3-54

Volatile Variables
Volatile variables are potentially uninitialized and their content is always
full range.

2 int volatile_test (void)
3 {
4 volatile int tmp;
5 return(tmp); // NIV orange: the variable content is full range[-
2^31;2^31-1]
6 }

In the case of a global variable the content would also be full range, but the
NIV check would be green.

Structures with Volatile Fields
In this example, although only the b field is declared as volatile, in practice
any read access to the “a” field will be full range and orange.

2 typedef struct {
3 int a;
4 volatile int b;
5 } Vol_Struct;

Absolute Addresses
Both reading from, and writing to, an absolute address leads to warning
checks on the pointer dereference. An absolute address is considered as a
volatile variable.

Val = *((char *) 0x0F00); // NIV and IDP orange: access to an

3-48

Advanced Setup

absolute address

Pointer Comparison
PolySpace is a static tool analyzing source code. Memory management
concerns dynamic considerations, and the characteristics of particular
compilers and targets. PolySpace therefore doesn’t consider where objects
are actually implanted in memory

5 int *i, *j, k;
6 i = (int *) 0x0F00;
7 j = (int *) 0x0FF0;
8
9 if (i < j) // the condition can be true or false
10 k = 12; // this line is reachable
11 else
12 k = 23; // this line is reachable too.

Its the same situation if “i” and “j” points to real variable

6 i = & one_variable;
7 j = & another_one;
9 if (i < j) // the condition can still be true or false

Left Shift on Negative Variables
Consider the example below.

• When the option -allow-negative-operand-in- shift is not used,PolySpace
gives a red error on the SHF check because behavior is compiler-dependant.

• When the option -allow-negative-operand-in- shift isused, y is always
full range even if the signed value of x is known.

4 char x, y;
5 x = 0x8F;
6 y = x << 3 ; // OVFL and UNFL Warnings

Some Bitwise Operators
PolySpace results are not equally precise with all bitwise operators - AND,
OR, XOR, and NOT (resp. &, |, ^,))

3-49

3 Analysis Setup

1 int random_uint(void);
2
3 void test (void)
4 { unsigned int var1, var2, var3;
5 var1=0; var2=0;
6
7 // precision with zero on values with AND bitwise operator
8 var3= 0x01 & var2;
9 if (random_uint()) assert(var3==0); // ASRT Checked
10 var3= 0x02 & 0xF3;
11 if (random_uint()) assert(var3==0x02); // ASRT checked
12 // Full range with other values
13 var3 = random_uint();
14 var3 = var3 & 0x02;
15 if (random_uint()) assert(var3==0x02 || var3==0); // ASRT
Warning
16
17 // Full range on values with OR bitwise operator
18 var3=var1|var2;
19 if (random_uint()) assert(var3==0); // ASRT Warning
20 if (random_uint()) assert(var3!=0); // ASRT Warning
21
22 // Full range on values with XOR bitwise operator
23 var3=var1^var2;
24 if (random_uint()) assert(var3==0); // ASRT Warning
25 if (random_uint()) assert(var3!=0); // ASRT Warning
26
27 // precision with zero values on NEGATIVE bitwise operator
28 var3 = ~var1;
29 if (random_uint()) assert(var3==0xFFFFFFFF); // ASRT checked
30 // precision on values with NEGATIVE bitwise operator
31 var3 = ~0xAE;
32 if (random_uint()) assert(var3==0xFFFFFF51); // ASRT
checked
33 }

Bitfields
PolySpace considers a bitfield to be a permanently full range variable.

3-50

Advanced Setup

4 typedef struct _x
5 { unsigned int a:1;
7 unsigned int b:1; } bit;

12 int main(void)
13 { bit z;
14 z.b = 0;
15 z.a = 1;
16 assert(z.a == 1); // orange ASRT

Float Loops
Values on constructions are less precise when floats are used in loops.

5 int i;
6 double X = 0.0;
7
8 // less precision on float evaluation in loops
9 for (i = 0 ; i < 6; i++)
10 X = X + 10.56; // OVFL warning
11 // VOA says 10.561 >= EXPR >= 10.559 OR EXP >= 21.119

Shared Variables
At the minimum, a shared variable contains a union of all ranges it can
contain among the application. At the maximum, the variable will be full
range.

12 void p_task1(void)
13 {
14 begin_cs();
15 X = 0;
16 if (X) {
17 Y = X; // Verified NIV, even it should be grey
18 assert (Y == 12); // Warning assert, even it should be grey
19 }
20 end_cs();
21 }
22
23 void p_task2(void)
24 {

3-51

3 Analysis Setup

25 begin_cs();
26 X = 12;
27 Y = X + 1; // Verifier considers [X==1] or [X==13]
28 if (Y == 13)
29 Y = 14;
30 else
31 Y = X - 1 ; // Verified checks even it should be grey
32 end_cs();
33 }

Array of Function Pointers
In the following example, PolySpace results show an orange check despite the
test for a NULL function pointer test. However, it does accurately track the
functions being called.

18 ptr_func array_func[] = {
19 f1,
20 f2,
21 NULL,
22 };
23
24 void main(void)
25 {
26 int i;
27
28 i = 0;
29 while (i < 3) {
30 if (array_func[i] != NULL)
31 array_func[i](); // function must point to a valid
function
32 i++; }

Trigonometric Functions
With all trigonometric functions such as cosines, sines etc., PolySpace always
assumes that the return value is bound between the limits of that function -
irrespective of the parameter passed to it. Consider the following example,
which uses acos, sin and asin functions.

7 double res;

3-52

Advanced Setup

8
9 res = sin(3.141592654);
10 assert(res == 0.0); // VOA says [-1..1]
11
12 res = asin(0.0);
13 assert(res == 0.0); // VOA Always in [-pi/2..pi/2]
14
15 res = acos(0.0);
16 assert(res == 0.0); // VOA always in [0..pi]

Unions
It is recognized nonetheless that there are situations in which the careful
use of unions is desirable in constructing an efficient implementation.
Nevertheless, the kinds of implementation behavior that might relevant are:

• Padding: padding could be inserted at the end of an union.

• Alignment: members of any structures within union could have different
alignments.

• Endianness: whether the most significant byte of a word could be stored at
the lowest or highest memory address.

• Bit-order: bits within bytes could have both different numbering and
allocation to bit fields.

This why PolySpace can lose precision when structure unions are considered.
Indeed this kind of implementation is compiler dependant. Conversions from
one type a union to another will cause a loss of precision on two checks:

• Is the other field initialized? Orange NIV

• What is the content of the other field? Full range for VOA

typedef union _u {
int a;
char b[4]; } my_union;
my_union X;

X.b[0] = 1; X.b[1] = 1; X.b[2] = 1; X.b[1] = 1;
if (X.A == 0x1111)

3-53

3 Analysis Setup

else // both branches are reachable

Loop Exit Conditions
PolySpace is more precise in loops where a test other than “does not equal” is
used. Consider the loop index exit values in the following examples.

The orange check in this example

4 x = 0;
5 While (x != value)
6 {
7 ;
8 x++;
9 }

is not evident here:

5 While (x <= value)

8 x++;

Constant Pointer
To increase PolySpace precision where pointers are analyzed, replace

const int *p = &y;

with:

#define p (&y)

Variables

• “How are Variables Initialized” on page 3-55

• “Data and Coding Rules ” on page 3-56

• “Variables: Declaration and Definition” on page 3-56

• “How Can I Model Variable Values External to My Application?” on page
3-57

3-54

Advanced Setup

How are Variables Initialized
Consider external, volatile and absolute address variable in the following
examples.

Extern. PolySpace works on the principle that a global or static extern
variable could take any value within the range of its type.

extern int x;
int y;
y = 1 / x; // orange because x ~ [-2^31, 2^31-1]
y = 1 / x; // green because x ~ [-2^31 -1] U [1, 2^31-1]

Refer to “Reviewing code colored by PolySpace ” for more information on color
propagation.

For extern structures containing field(s) of type “pointer to function”, this
principle leads to red errors in the viewer. In this case, the resulting default
behavior is that these pointers don’t point to any valid function. For results to
be meaningful here, you may well need to define these variables explicitly.

Volatile.

volatile int x; // x ~ [-2^31, 2^31-1], although x has not been
initialized

• If x is a global variable, the NIV is green

• If x is a local variable, the NIV is always orange

Absolute Addressing. The content of an absolute address is always
considered to be potentially uninitialized (orange NIV):

#define X (* ((int *)0x20000))

• X = 100;

• y = 1 / X; // NIV on X is orange

• int *p = (int *)0x20000;

• *p = 100;

• y = 1 / *p ; // NIV on *p is orange

3-55

3 Analysis Setup

Data and Coding Rules
Data rules are design rules which dictate how modules and/or files interact
with each other.

For instance, consider global variables. It is not always apparent which
global variables are produced by a given file, or which global variables are
used by that file. The excessive use of global variables can lead to resulting
problems in a design, such as

• File APIs (or function accessible from outside the file) with no procedure
parameters;

• The requirement for a formal list of variables which are produced and used,
as well as the theoretical ranges they can take as input and/or output
values.

Variables: Declaration and Definition
The definition and declaration of a variable are two discrete but related
operations which are frequently confused.

Declaration. A declaration provides information about the type of the
function or variable.

• for a function, the prototype: int f(void);

• for an external variable: extern int x;

If the function or variable is used in a file where it has not been declared, a
compilation error will result.

Definition. A definition provides:

• for a function, the body of the function has been written: int f(void)
{ return 0; }

• for a variable, a part of memory has been reserved for the variable: int x;
or extern int x=0;

When a variable is not defined, the -allow-undef-variable is required to
start the analysis. Where that option is used, PolySpace will consider the

3-56

Advanced Setup

variable to be initialized, and to potentially take any value in its full range
(see PolySpace and variables initialization section).

When a function is not defined, it is stubbed automatically.

How Can I Model Variable Values External to My Application?
There are three main considerations.

• Usage of volatile variable;

• Express that the variable content can change at every new read access;

• Express that some variables are external to the application.

A volatile variable can be defined as a variable which does not respect
following axiom:

"if I write a value V in the variable X, and if I read X’s value before any other
writing to X occurs, I will get V."

Thus the value of a volatile variable is "unknown". It can be any value that
can be represented by a variable of its type, and that value can change at any
time - even between 2 successive memory accesses.

A volatile variable is viewed as a "permanent random" by PolySpace because
the value may have changed between one read access and the next.

Note Although the volatile characteristic of a variable is also commonly used
by programmers to avoid compiler optimization, this characteristic has no
consequence for PolySpace.

int return_random(void)
{
volatile int random; // random ~ [-2^31, 2^31-1], although

// random is not initialized
int y;
y = 1 / random; // division and init orange because

// random ~ [-2^31, 2^31-1]

3-57

3 Analysis Setup

random = 100;
y = 1 / random; // division and init orange because

// random ~ [-2^31, 2^31-1]
return random; // random ~ [-2^31, 2^31-1]

}

Types Promotion

• “An Example of an Unsigned Promoted to Signed” on page 3-58

• “What are the Promotions Rules in Operators?” on page 3-59

An Example of an Unsigned Promoted to Signed
It is important to understand the circumstances under which signed integers
are promoted to unsigned.

For example, the execution of the following piece of code would produce an
assertion failure and a core dump.

#include <assert.h>
int main(void) {
int x = -2;
unsigned int y = 5;
assert(x <= y);

}

Consider the range of possible values (interval) of x in this second example.
Again, this code would cause assertion failure:

volatile int random;
unsigned int y = 7;
int x = random;
assert (x >= -7 && x <= y);

However, given that the interval range of x after the second assertion is not [
-7 .. 7], but rather [0 .. 7], the following assertion would hold true.

assert (x>=0 && x<=7);

Implicit promotion explains this behavior.

3-58

Advanced Setup

In fact, in the second example x <= y is implicitly:

((unsigned int) x) <= y /* implicit promotion because y is unsigned */

A negative cast into unsigned gives a big value, which has to be bigger that 7.
And this big value can never be <= 7, and so the assertion can never hold true.

What are the Promotions Rules in Operators?
Knowledge of the rules applying to the standard operators of the C language
will help you to analyze those orange and red checks which relate to overflows
on type operations. Those rules are:

• Unary operators operate on the type of the operand;

• Shifts operate on the type of the left operand;

• Boolean operators operate on Booleans;

• Other binary operators operate on a common type. If the types of the 2
operands are different, they are promoted to the first common type which
can represent both of them.

So, be careful of constant types (refer to The type of constants and constant
overflows section), and also when analyzing any operation between variables
of different types without an explicit cast.

Consider the integral promotion aspect of the ANSI standard. On arithmetic
operators like +, -, *, %and / , an integral promotion is applied on both
operands. From the PolySpace point of view, that can imply an OVFL or a
UNFL orange check.

Example

2 extern char random_char(void);
3 extern int random_int(void);
4
5 void main(void)
6 {
7 char c1 = random_char();
8 char c2 = random_char();
9 int i1 = random_int();

3-59

3 Analysis Setup

10 int i2 = random_int();
11
12 i1 = i1 + i2; // A typical OVFL/UNFL on a + operator
13 c1 = c1 + c2; // An OVFL/UNFL warning on the c1 assignment
[from int32 to int8]
14 }

Unlike the addition of two integers at line 12, an implicit promotion is used in
the addition of the two chars at line 13. Consider this second “equivalence”
example.

2 extern char random_char(void);
3
4 void main(void)
5 {
6 char c1 = random_char();
7 char c2 = random_char();
8
9 c1 = (char)((int)c1 + (int)c2); // Warning UOVFL: due to
integral promotion
10 }

An orange check represents a warning of a potential overflow (OVFL),
generated on the (char) cast [from int32 to int8]. A green check represents
a verification that there is no possibility of any overflow (OVFL) on the
+operator.

In general, integral promotion requires that the abstract machine should
promote the type of each variable to the integral target size before realizing
the arithmetic operation and subsequently adjusting the assignment type.
See the equivalence example of a simple addition of two char (above).

Integral promotion respects the size hierarchy of basic types:

• char (signed or not) and signed short are promoted to int.

• unsigned short is promoted to int only if int can represent all the possible
values of an unsigned short. If that is not the case (perhaps because of a
16-bit target, for example) then unsigned short is promoted to unsigned int.

3-60

Advanced Setup

• Other types like (un)signed int, (un)signed long int and (un)signed long
long int promote themselves.

Built-in Functions
PolySpace stubs all functions which are not defined within the analysis.
PolySpace provides for all the functions defined in the stl, in the standard libc,
an accurate stub taking into account functional aspect of the function.

Stubs of stl Functions
All functions of the stl are stubs by PolySpace. Using –no-stl-stubs allows
deactivating standard stl stubs (not recommended for further possible scaling
trouble).

Note All allocation functions found in the code to analyze like new, new[],
delete and delete[] are replaced by internal and optimized stubs of new and
delete. A warning is given in the log file when such replace occurs.

Stubs of libc Functions
Concerning the libc, all theses functions are declared in the standard list of
headers and can be redefined using its own definition by invalidating the
associated set of functions:

• Using D POLYSPACE_NO_STANDARD_STUBS for all functions declared in
Standard ANSI headers: assert.h, ctype.h, errno.h, locale.h, math.h,
setjmp.h (’setjmp’ and ’longjmp’ functions are partially implemented
– see <polyspaceProduct>/cinclude/__polyspace__stdstubs.c), signal.h
(’signal’ and ’raise’ functions are partially implemented – see
<polyspaceProduct>/cinclude/__polyspace__stdstubs.c), stdio.h, stdarg.h,
stdlib.h, string.h,and time.h.

• Using –D POLYSPACE_STRICT_ANSI_STANDARD_STUBS for functions
only declared in strings.h, unistd.h, and fcntl.h.

Most of the time theses functions can be redefined and analyzed by PolySpace
by invalidating the associated set of functions or only the specific function
using –D __polyspace_no_<function name>. For example, If you want to

3-61

3 Analysis Setup

redefine the fabs() function, you need to add the –D __polyspace_no_fabs
directive and add the code of your own fabs() function in a PolySpace analysis.

There are five exceptions to theses rules The following functions which deal
with memory allocation can not be redefined: malloc(), calloc(), realloc(),
valloc(), alloca(), __built_in_malloc() and __built_in_alloca().

3-62

4

PolySpace™ Class Analyzer
Process

Analyzing C++ Classes (p. 4-2) Describes the purpose of the class
analyzer

Types of Classes (p. 4-3) Provides tips for analyzing different
types of classes

4 PolySpace™ Class Analyzer Process

Analyzing C++ Classes

In this section...

“Overview” on page 4-2

“Why Provide a Class Analyzer” on page 4-2

Overview
This chapter presents a strategy for analyzing C++ classes. This allows the
developer to identify, and possibly remove most of the runtime errors present
in a class.

For technical details on how to use PolySpace™ class analyzer please refer
to “Getting started” section.

Why Provide a Class Analyzer
One aim of object languages such as C++ is reusability. A class or a class
family is reusable if it is free of bugs, for all uses of the class. It can be
considered free of bugs if runtime errors have been removed and functional
tests are successful. As evidence, the first objective is to remove as much
as possible runtime errors.

PolySpace class analyzer is a mean for removing runtime errors at compilation
time. PolySpace will simulate all the possible use of a class, by:

1 Creating objects using all constructors (default if no one exists),

2 Calling all methods (public, static, and protected) on previous objects in
any orders,

3 Calling all methods of the class between zero and an infinity of times,

4 Calling every destructor on previous object (if they exist).

4-2

Types of Classes

Types of Classes

In this section...

“Simple Class” on page 4-3

“Simple Inheritance” on page 4-5

“Multiple Inheritance” on page 4-6

“Abstract Class” on page 4-7

“Virtual Inheritance” on page 4-8

“Other Types” on page 4-9

Simple Class
On the following class:

Stack.h

#define MAXARRAY 100

class stack
{
int array[MAXARRAY];
long toparray;

public:
int Top (void);
int IsEmpty (void);
int Push (int newval);
void Pop (void);
stack ();

};

stack.cpp

1 #include "stack.h"
2
3 stack::stack ()
4 {

4-3

4 PolySpace™ Class Analyzer Process

5 toparray = -1;
6 for (int i = 0 ; i < MAXARRAY; i++)
7 array[i] = 0;
8 }
9
10 int stack::top (void)
11 {
12 int i = toparray;
13 return (array[i]);
14 }
15
16 bool stack::isempty (void)
17 {
18 if (toparray >= 0)
19 return false;
20 else
21 return true;
22 }
23
24 bool stack::push (int newvalue)
25 {
26 if (toparray < MAXARRAY)
27 {
28 array[++toparray] = newvalue;
29 return true;
30 }
31
32 return false;
33 }
34
35 void stack::pop (void)
36 {
37 if (toparray >= 0)
38 toparray--;
39 }

The Class analyzer calls the constructor and then all methods in any orders
many times.

4-4

Types of Classes

The analyze of this class with PolySpace™ Class-Analyzer highlights 2
problems, as shown in previous Viewer results:

• The stack::push method may write after the last element of the array
(then the OBAI orange check at line 28).

• The stack::top method if called before Push will access element -1 (then
the OBAI and NIV checks at line 13).

Fixing these problems will turn the class runtime error bugs free.

Simple Inheritance
Consider classes as follows:

A is the base class of B and D.

4-5

4 PolySpace™ Class Analyzer Process

B is the base class of C.

In such case PolySpace class analyzer allows to do the following analysis:

1 The A class can be analyzed just by providing its own code to PolySpace.
This corresponds to the previous simple class paragraph.

2 The B class can be analyzed by providing B code and A class declaration. In
this case A code will be stubbed automatically by PolySpace.

3 The B class can be analyzed by providing B and A codes (declaration and
definition). This is a first level of integration analysis. The class analyzer
will not call A methods. In this case objective is to find bugs in B class code.
Bugs in class A are found during previous steps.

4 The C class can be analyzed by providing C code, B class declaration and A
class declaration. In this case A and B codes will be stubbed automatically.

5 The C class can be analyzed by providing codes of A, B and C classes as an
integration analysis. The class analyzer will call all the C methods but not
inherited methods from B and A. The objective is to find bugs in C class.

In these cases there is no need to provide D class code for analyzing A, B
and C class as long as they do not use the class (e.g. member type) or need
it (e.g. inherit).

Multiple Inheritance
Consider classes as follows:

4-6

Types of Classes

A and B are C base classes.

In such case PolySpace class analyzer allows to do the following analysis:

1 A and B classes can be analyzed separately just by providing there own
code to PolySpace. This corresponds to the previous simple class paragraph.

2 The C class can be analyzed just by providing its own code with A and B
declarations. A and B methods will be stubbed automatically.

3 The C class can be analyzed by providing codes of A, B and C classes as an
integration analysis. The class analyzer will call all the C methods but not
inherited methods from A and B. The objective is to find bugs in C class.

Abstract Class
Consider classes as follows:

4-7

4 PolySpace™ Class Analyzer Process

A is an abstract class

B is a simple class.

A and B are C base classes.

C is not an abstract class.

As it is not possible to create an object of class A, this class cannot be analyzed
separately from other classes. Therefore it is not allowed to specify such class
to PolySpace class analyzer. Of course, C class can be analyzed in the same
way as in previous paragraph.

Virtual Inheritance
Consider classes as follows:

4-8

Types of Classes

B and C classes virtually inherit the A class

B and C are D base classes.

A, B, C and D can be analyzed in way described in previous chapter.

Virtual inheritance has no impact on the way of using the class analyzer.

Other Types

Template
A template class can not be analyzed directly. But a class instantiating a
template can be analyzed by PolySpace class analyzer.

4-9

4 PolySpace™ Class Analyzer Process

Note If only the template declaration is provided, missing functions
definitions will be automatically stubbed.

Example

template<class T > class A {
public:
T i;
T geti() {return i;}
A() : i(1) {}

};

You have to define a “typedef” to create a specialization of the template:

template class A<int>; // Explicit specialization
typedef class A<int> my_template; // complete instance of the template

and use option -class-analyzer my_template.

It will analyze one instance of the template.

Class Integration
Lets consider a C class inheriting from A and B classes and having object
members of AA and BB classes.

Doing a class integration analysis consists in verifying the C class and
providing the code of A, B, AA and BB class. If some definitions are missing
PolySpace class analyzer will stub them automatically.

4-10

5

PolySpace™ C++ add-in for
Visual Studio®

Overview (p. 5-2) Describes the PolySpace™ C++
add-in for Visual Studio®

Using PolySpace™ Software Within
Visual Studio® (p. 5-3)

Describes how to use PolySpace
software with Visual Studio

Analyzing an Entire Project (p. 5-16) Describes how to analyze an entire
project

5 PolySpace™ C++ add-in for Visual Studio®

Overview
This chapter describes the usage of PolySpace™ Client™ for C/C++ while
integrated in the Microsoft® Visual C++® .NET (see The PolySpace™
Installation Guide in <PolySpaceInstallCommon>/Docs directory for the
exact compatibility).

The PolySpace C++ add-in for Visual Studio® provides automatic source code
verification and bug detection in source code developed inside the Visual IDE.
It includes the following main features:

• An automatic setting of PolySpace project configuration file derived from
your Visual project settings.

• A direct launching of C++ file analysis from Visual IDE.

• A report of PolySpace compilation findings back to the IDE.

5-2

Using PolySpace™ Software Within Visual Studio®

Using PolySpace™ Software Within Visual Studio®

In this section...

“Overview” on page 5-3

“PolySpace™ Parameters Within Visual Studio®” on page 5-3

“Performing a File Verification from Visual Studio®” on page 5-7

“Analyzing Classes” on page 5-11

“The Configuration File and Default Options” on page 5-14

Overview
The PolySpace™ for Visual .NET plug-in allows you to launch C++ analyses
inside the Visual C++® IDE whether those analyses are local or remote.

Launching options are integrated within the Visual editor through a
PolySpace menu and a toolbox.

Note Some components of the plug-in are not automatically docked at
installation. They must be manually moved where user wants them. Next
time the interface will open, the components will be at the same place.

5-3

5 PolySpace™ C++ add-in for Visual Studio®

PolySpace™ Parameters Within Visual Studio®

When the PolySpace Visual C++ plug-in has been installed, a Polyspace menu
and a PolySpace Log tab are displayed inside the Visual Studio® IDE. Those
tools are used to start local or remote analysis on current classes and files of
a Visual Studio C++ project (see next figure) without getting off your own
development environment.

PolySpace Menu and PolySpace Log Tab in Visual Studio®

5-4

Using PolySpace™ Software Within Visual Studio®

PolySpace™ Menu

• Select PolySpace > Launcher to open the PolySpace launcher on the last
configuration file updated in Visual.

Note The consistency is not checked with the current project and a
warning message is always displayed. The “cfg” file could not correspond
to “cfg” file of the current project.

• Select PolySpace > Spooler to start the PolySpace spooler. This tool is
used to manage PolySpace jobs that are performed on remote servers.

For more information, see “Step 4: Launch PolySpace™ Remotely” on page
2-65.

• Select PolySpace > Viewer to open the PolySpace Viewer with the last
available results. If the analysis has been done on the server, downloading
them first is required before clicking on this button.

• Select PolySpace > Display PolySpace Log to view the progress of an
analysis (see below).

• Select PolySpace > Help to open the PolySpace Client/Server for C++
User Guide (PDF format).

• Select PolySpace > About to display the release number of the PolySpace
for Visual Studio plug-in.

5-5

5 PolySpace™ C++ add-in for Visual Studio®

PolySpace Log Tab
After you launch a verification, the PolySpace Log displays a progress
report. Compilation errors are highlighted as links. Click a link to display
the file and line number that includes the error.

Click the X in the PolySpace Log toolbar to stop the verification. For a server
analysis, this option works only during the compilation phase — before it is
sent to the server. However, you can select PolySpace > Spooler and stop
the analysis from the spooler dialog.

The PolySpace™ Log Window

5-6

Using PolySpace™ Software Within Visual Studio®

PolySpace™ Right-Click Menu
You can right-click on files in the Solution Explorer to perform PolySpace
Verification (see picture below).

PolySpace™ Verification Menu Option

Select a file, then right-click and select PolySpace Verification to launch a
verification on that file.

5-7

5 PolySpace™ C++ add-in for Visual Studio®

Performing a File Verification from Visual Studio®

To start your first analysis:

1 Select File > New > Project > New > Project Console Win32 to create
a new project space

2 Enter the name CppExample, then save it in an appropriate location.
For example: C:\PolySpace\Visual.

Some files and a Project Console Win32 are created.

3 Select the Browse the solution tab.

4 Right-click the project name, then select Add > Add existing element
from the pop-up menu.

5 Add matrix.cpp and matrix.h (located in
<PolySpaceProduct>/Examples/Demo_Cpp_Long/sources) to the
CppExample project .

6 In the Visual Studio Solution Explorer, select the matrix.cpp file.

7 Right-click matrix.cpp file, then select PolySpace Verification.

5-8

Using PolySpace™ Software Within Visual Studio®

The Easy Settings dialog box opens, allowing you to set parameters
including precision of the current analysis and a result folder (See next
figure).

5-9

5 PolySpace™ C++ add-in for Visual Studio®

Easy Settings Window

8 Select the basic options for the current class analysis:

• Settings window allows you to select precision (-0/-quick) and level of
analysis (-to);

• Parameters window allows you to select:

– Results directory – (-results-dir).

– Function called before main – A function, if any, called before all
functions (-function-call-before-main)

5-10

Using PolySpace™ Software Within Visual Studio®

– Main generator write variables – The type of initialization for
global variables (-main-generator-writes-variables).

– Class analysis tab – By default, enables the class analysis with
default options: the class to analyze (-class-analyzer) and associated
options which can change behavior of the analysis (-class-only and
-class-analyzer-calls).

– File analysis tab – Allows you to choose a file analysis with
associated option (-main-generator-calls).

– Main analysis tab – Allows you to chose a partial integration
analysis by choosing the name of the “main” (-main).

• Scope window allows you to modify the list of files and classes to verify.

9 Click Execute to start the verification.

You can follow the progress of the verification in the PolySpace Log
tab, and later using the PolySpace Spooler if remote launching has been
enabled.

5-11

5 PolySpace™ C++ add-in for Visual Studio®

Analyzing Classes
You can analyze a C++ class by modifying the scope option in the Easy
Settings dialog box.

To analyze a class:

1 In the Visual Studio Solution Explorer, right-click a file, then select
PolySpace Verification.

The Easy Settings dialog box opens.

5-12

Using PolySpace™ Software Within Visual Studio®

2 Click in the Scope window.

The Select Files and Classes dialog box appears.

5-13

5 PolySpace™ C++ add-in for Visual Studio®

3 Select the classes you want to analyze, then click Add.

4 Click Execute in the Easy Settings dialog box to start the verification.

You can follow the progress of the verification in the PolySpace Log
tab, and later using the PolySpace Spooler if remote launching has been
enabled.

5-14

Using PolySpace™ Software Within Visual Studio®

The Configuration File and Default Options
Some options are set by default and some others are directly extracted from
the Visual project and set in the associated PolySpace configuration file.

• The list of Visual options extracted from the project file is:

Visual Option PolySpace Option

/D <name> -D <name>

/U <name> -U <name>

/MT -D_MT

/MTd -D_MT -D_DEBUG

/MD -D_MT -D_DLL

/MDd -D_MT -D_DLL -D_DEBUG

/MLd -D_DEBUG

/Zc:wchar_t -wchar-t-is keyword

/Zc:forScope -for-loop-index-scope in

/FX -support-FX-option-results

/Zp[1,2,4,8,16] -pack-alignment-value [1,2,4,8,16]

• Sources and includes directories (-I) are also extracted automatically from
Visual options.

• Default options passed to the kernel depends of the Visual Studio release:
-dialect Visual7.1 (or -dialect visual8) -OS-targetVisual -target i386
-desktop

Standard PolySpace options like -voa, can be set by clicking on the “Launcher”
right click menu (or from the PolySpace menu).

It starts the standard graphical interface polyspace-launcher on a particular
PolySpace configuration file (with .cfg extension).

Every option selected, will be taken into account during the analysis, except
the list of options set in the “PolySpace Basic Setting [C++]” window.

5-15

5 PolySpace™ C++ add-in for Visual Studio®

Analyzing an Entire Project
The launching of PolySpace on an entire project can only be made through
the PolySpace Launcher using the “Launcher” command. In this case, the
option -main must be set manually.

5-16

6

PolySpace™ UML Link™
RH Product

Getting Started (p. 6-2) Describes the steps needed to get
started using

PolySpace™ UML Link™ RH
product

PolySpace™ Panel (p. 6-10) Describes the PolySpace panel user
interface

Installing the Integration into an
Existing Model (p. 6-17)

Describes how to use the PolySpace
integration with an existing model

Other Topics (p. 6-19) Provides additional information
about the PolySpace UML Link RH
product

6 PolySpace™ UML Link™ RH Product

Getting Started

In this section...

“Overview” on page 6-2

“Step 1 – Opening the Example Airbag Model” on page 6-2

“Step 2 – Starting an Analysis” on page 6-3

“Step 3 – The Start Analysis Panel” on page 6-4

“Step 4 – Navigating from the PolySpace™ Results to the Rhapsody®

Model” on page 6-8

Overview
While using Collaborative Model-Driven Development, run-time errors can
be caused either by design issues in the model itself or faulty hand written
code. These reliability flaws can sometimes be found using code reviews
and intensive testing - but these techniques are time-consuming and costly.
PolySpace™ UML Link™ RH software saves you both time and money by
performing an exhaustive verification of the code and automatically flagging
flaws directly in the original Rhapsody® model, enabling developers to fix
these issues quickly and early during the design process.

This getting started guide takes you through the steps required to analyze
a model.

Note The PolySpace plug-in has already been integrated into the example
model. Before other models can be analyzed the plug-in may need manually
installing into the Rhapsody project directory. During the getting started the
following conventions will be used: “<PolySpaceInstallCommon>” will refer to
the installation location of the PolySpace common folder.

Step 1 – Opening the Example Airbag Model
To open the model and display the PolySpace panel:

6-2

Getting Started

1 Open the airbag_CPP.rpy model in
<PolySpaceInstallCommon>/PolySpaceUMLLink/example.

2 Select the Packages list in the airbag_CPP Model View.

Right-click AirBagFiles, then select PolySpace Panel from the menu.

The PolySpace Panel opens. The PolySpace Panel is the interface to the
PolySpace UML Link RH within Rhapsody.

Step 2 – Starting an Analysis
To start an analysis:

6-3

6 PolySpace™ UML Link™ RH Product

1 Click on the Start button in the PolySpace Panel.

For the first analysis of the model, or if the Rhapsody configuration
environment changes, the Build Environment Settings dialog are displayed.

The operating system target (-OS-target) is set automatically from the
models environment. When the Linux® environment is detected the dialect
will be set to default (-dialect) and include directory will be configured to
use the Linux header files supplied with PolySpace software.

2 Click OK.

Note Make sure that the generated code for the model is up to date before
starting an analysis.

Step 3 – The Start Analysis Panel
The “Start Analysis” panel allows the selection of the type of analysis
(Analysis frame) class to in the model analyze (in the Scope frame), and
analysis options (Settings frame).

6-4

Getting Started

Note The results directory is set automatically when the class to analyze
or analysis mode is changed.

To run the analysis:

1 Set the options as they are shown below:

6-5

6 PolySpace™ UML Link™ RH Product

Note If no remote PolySpace Server is available, deselect the Remote
Mode option. The analysis will be performed locally.

6-6

Getting Started

2 Click the Execute button.

A command window is displayed, showing the phases of the analyses
performed locally:

Note The settings (size of window, number of lines of history, font etc) for
the command window can be changed by right clicking on the window title
and selecting properties. It follows standard settings of the “Command
Windows” associated with Windows® OS.

You can follow the analysis on the server (if you selected Remote Mode),
by clicking the Manage Analyses button in the PolySpace panel to display
the PolySpace Queue Manager interface (or Spooler).

3 When the analysis has completed, download the results and when prompted
open with the PolySpace Viewer.

6-7

6 PolySpace™ UML Link™ RH Product

Step 4 – Navigating from the PolySpace™ Results
to the Rhapsody® Model
To navigate from the PolySpace results to the model:

1 Navigate to the first red error, a non initialized variable detected in the
model at line 104 of Airbag Control_C.

2 Right click the error, then select Back to Model from the pop-up menu.

Note For the "Back To Model" feature to work Rhapsody must be running
with the model open.

6-8

Getting Started

This will cause the code to be located within the Rhapsody model.
Depending on the Rhapsody configuration this will either be shown in a
popup dialog (such as shown below) or in the code view:

This is the end of the getting started guide.

6-9

6 PolySpace™ UML Link™ RH Product

PolySpace™ Panel

In this section...

“Overview” on page 6-10

“Start Button” on page 6-11

“Stop Button” on page 6-14

“Compilation Log Button” on page 6-14

“Configure Button” on page 6-14

“Manage Analyses Button” on page 6-15

“View Results Button” on page 6-16

“Browse for Results Button” on page 6-16

“Help Button” on page 6-16

Overview
The PolySpace™ Panel is the main interface of the PolySpace UML Link™
RH integration with Rhapsody®. The Panel can be started by right clicking
on either a package or a class in the Rhapsody “Entire Model View” and
selecting PolySpace Analysis.

6-10

PolySpace™ Panel

Start Button
The Start button is used to start an analysis.

Either for the first analysis of the model, or if the Rhapsody configuration
environment has changed since the last analysis the Build Environment
Settings dialog will be displayed:

6-11

6 PolySpace™ UML Link™ RH Product

The Operating System Target (-OS-target) is detected automatically from the
active Rhapsody build environment.

Select the appropriate C or C++ dialect and the location of the include files for
the compiler. If more than one include directory is required this can be added
later using the “Configure” option on the PolySpace Panel.

Note If the visual OS-Target is detected and a PolySpace supported version
of the Microsoft® Visual C++® compiler is installed the “Dialect” (-dialect) and
“Include Directory” fields will be automatically completed. This also applies
if Linux® is detected as the -OS-Target, the dialect and include directory
will be configured to process the header files from the PolySpace™ Client™
for C/C++ product directory.

Start Analysis Dialog
When you select OK in the Build Environment Settings dialog, the Start
Analysis dialog is displayed:

6-12

PolySpace™ Panel

From the Start Analysis dialog:

• Select the class to analyze from the scope section. The results directory is
automatically set according to the name of the selected class, but can be
overwritten once the class to analyze has been selected.

6-13

6 PolySpace™ UML Link™ RH Product

• Select Execute to start the analysis. If Remote Modeis selected the
analysis will be sent to the PolySpace™ Server™ for C/C++ server at the
end of the compilation phase.

• The Settings section allows setting of the analysis precision, the number
of passes of the analysis to perform and the results directory.

• The Analysis Mode section allows configuration of the type of analysis
to perform. The options are either to use the “Class Analyzer” to analyze
individual classes, or, without in which case a valid “main” function needs
to be present in the code. To analyze multiple classes at the same time
deselect the “Single Class Only” option, and highlight the classes to analyze
in the list. The control and shift keys can be used to control the selection of
classes from the list.

Stop Button
The client based phase (compilation) of the analysis can be stopped by clicking
on the Stop button.

For analysis running on the PolySpace Server for C/C++ product use the
“Queue Manager” to control the jobs.

Compilation Log Button
The latest compilation log can be viewed at any time by clicking on the
“Compilation Log” button.

Configure Button
The configure button displays a cut-down version of the PolySpace Launcher.
From this interface advanced PolySpace options can be configured. Also when
required extra source code compilation parameters can be entered.

Click the disc button in the top left corner to save the configuration.

6-14

PolySpace™ Panel

Note The PolySpace integration extracts the include directories and
compilation flags from the current build environment. In many cases no
further configuration other than that requested by the “Build Environment”
dialog should be required for a standard analysis.

Manage Analyses Button
To download the results from a PolySpace Server or follow the progress of an
analysis running on a Server click on the “Analysis Manager” button.

6-15

Colored Source Code for C++

(The latter definition does not impose the raising of an exception as a result
of an underflow. By default, processors supporting this standard permit the
deactivation of such exceptions.)

Consider the following example.

2 #define FLT_MAX 3.40282347e+38F // maximum representable
float found in <float.h>
3 #define FLT_MIN 1.17549435e-38F // minimum normalised
float found in <float.h>
4
5 void main(void)
6 {
7 float zer_float = FLT_MIN;
8 float min_float = -(FLT_MAX);
9
10 zer_float = zer_float * zer_float; // No check underflow
near zero. VOA says {[expr] =
0.0}
11 min_float = min_float * min_float; // UNFL ERROR: underflow
checked by verifier
12
13 }

Scalar or Float Division by zero: ZDV
Check to establish whether the right operand of a division (denominator)
is different from 0[.0].

C++ Example

1 extern int random_value(void);
2
3 class Operation {
4 public:
5 int zdvs(int p){
6 int j = 1;
7 return (1024 / (j-p)); // ZDV ERROR: Scalar Division by Zero
8 }
9 float zdvf(float p){

7-53

7 Working with Results Review

10 float j = 1.0;
11 return (1024.0 / (j-p)); // ZDV ERROR: float Division by Zero
12 }
13 };
14
15 int main(void)
16 {
17 Operation op;
18
19 if (random_value())
20 op.zdvs(1); // NTC ERROR: propagation of ZDV ERROR
21
22 if (random_value())
23 op.zdvf(1.0); // NTC ERROR: propagation of ZDV ERROR
24 }

Shift Amount is Outside its Bounds: SHF
Check to establish that a shift (left or right) is not bigger than the size of
integral type (int and long int). The range of allowed shift depends on the
target processor: 16 bits on c-167, 32 bits on i386 for int, etc.

C++ Example

1 extern int random_value(void);
2
3 class Shift {
4 public:
5 Shift(int val) : k(val){};
6 void opShift(int x, int l){
7 k = x << l; // SHF ERROR: [scalar shift
amount is outside its bounds 0..31]
8 }
9 void opShiftSup(int x, int l){
10 k = x >> l; // SHF ERROR: [scalar shift
amount is outside its bounds 0..31]
11 }
12 void opShiftUnsigned(unsigned int x, int l){
13 unsigned int v = 1024;
14 v = x >> l; // SHF ERROR: [scalar shift

7-54

Colored Source Code for C++

amount is outside its bounds 0..31]
15 }
16 protected:
17 int k;
18 };
19
20
21 void main(void)
22 {
23 int m, l = 1024; // 32 bits on i386
24 unsigned u = 1024;
25
26 Shift s(1024);
27
28 if (random_value()) s.opShift(l ,32); // NTC
ERROR: propagation of SHF ERROR
29 if (random_value()) s.opShiftUnsigned(u ,32); // NTC
ERROR: propagation of SHF ERROR
30 if (random_value()) s.opShiftSup(l ,32); // NTC
ERROR: propagation of SHF ERROR
31
32 }

Explanation
In this example, we just show that shift amount is greater than the integer
size.

Left Operand of Left Shift is Negative: SHF
Check to establish whether the operand of a left shift is a signed number.

C++ Example

1 extern int random_value(void);
2
3 class Shift {
4 public:
5 Shift(){};

7-55

7 Working with Results Review

6 int operationShift(int x, int y){
7 return x << 1; // SHF ERROR: left operand of left
shift is negative
8 }
9 };
10
11
12 void main(void)
13 {
14 Shift* s = new Shift();
15
16 if (random_value())
17 s->operationShift(-200,1); // NTC ERROR: propagation
of SHF ERROR
18 }

Explanation
As signed number representation is stored in the higher order bit, you can not
left-shift a signed number without loosing sign information.

As an aside, note that the -allow-negative-operand-in-shift option used
at launching time instructs PolySpace to allow explicitly signed numbers on
shift operations. Using the option in the current example, the red check at
line 8 is transformed in a green one.

Power Must be Positive: POW
Check to establish whether the left operand of the pow mathematical function
declared in <math.h> is positive (directly or in generated constructors or
destructors)

C++ Example

1 #include <math.h>
2
3 static volatile int random_int = 1;
4 static unsigned int rPositive;
5

7-56

Colored Source Code for C++

6 class Numeric_power
7 {
8 public:
9 Numeric_power(unsigned int *baseV, int *exponentV);
10 ~Numeric_power(){};
11 private:
12 double powerValue;
13 };
14
15 Numeric_power::Numeric_power(unsigned int *baseV, int *exponentV){
16 powerValue = pow(*baseV,*exponentV); // POW Warning:
[power may be not positive]
17 }
18
19 double calculate_power (int baseValue,int exponentValue) {
20 return pow(baseValue,exponentValue); // POW Warning:
[power may be not positive]
21 }
22
23 void main (void)
24 {
25 int x[3] = {3, 5, -1};
26 int negative = -(13%2);
27 volatile unsigned int pr;
28
29 if (random_int) {
30 rPositive = pr;
31 Numeric_power p(&rPositive,x);
32 }
33
34 if (random_int) calculate_power(negative,4);
35 if (random_int) pow(-7,4); // POW Warning: [power may be not posi
36
37 }

Explanation
The numeric_power constructor initializes its class member power_value
with two arguments. At line 26, the first argument, the left operand, is a

7-57

7 Working with Results Review

volatile unsigned int, and even it is safe, a warning message is display by
PolySpace. The calculate_power function has a negative argument on the left
but Polyspace points out a warning instead of a real problem. Remember that
behind orange there is also run-time errors.

Array Index is Outside its Bounds: OBAI
Check to establish whether an index is compatible with the length of the
array being accessed.

C++ Example

1 #define TAILLE_TAB 1024
2 typedef int tab[TAILLE_TAB];
3
4 class Array
5 {
6 public:
7 Array(){};
8 void initArray();
9 private:
10 tab table;
11 };
12
13
14 void Array::initArray()
15 {
16 int index;
17
18 for (index = 0; index < TAILLE_TAB ; index++){
19 table[index] = 10;
20 }
21 table[index] = 1; // OBAI ERROR: [out of bounds array index]
22 };
23
24
25 void main(void)
26 {
27 Array* test = new Array();
28 test->initArray(); // NTC ERROR: propagation of OBAI ERROR

7-58

Colored Source Code for C++

29 }

Explanation
Just after the loop, index equals SIZE_TAB. Thus tab[index] = 1 overwrites
the memory cell just after the last array element.

Note The message associated with the check OBAI gives always the range
of the array: out of bounds array index [0..1023].

Function Pointer Must Point to a Valid Function: COR
Check to establish whether a function pointer points to a valid function, or
to function with a valid prototype.

C++ Example

1 typedef void (*CallBack)(void *data);
2
3 struct {
4 int ID;
5 char name[20];
6 CallBack func;
7 } funcS;
8
9 float fval;
10
11 void main(void)
12 {
13 CallBack cb =(CallBack)((char*)&funcS + 24 * sizeof(char));
14
15 cb(&fval); // COR ERROR: function pointer must point to a
valid function
16 }

7-59

7 Working with Results Review

Explanation
In the example, func has a prototype in conformance with CallBack’s
declaration. Therefore func is initialized to point to the NULL function
through the global declaration of funcS.

Wrong Number of Arguments: COR
Check to establish whether the number of arguments passed to a function
matches the number of argument in its prototype.

C++ Example

1 extern int random_value(void);
2
3 typedef int (*t_func_2)(int);
4 typedef int (*t_func_2b)(int,int);
5
6 int foo_nb(int x)
7 {
8 if (x%2 == 0)
9 return 0;
10 else
11 return 1;
12 }
13
14 void main(void)
15 {
16 t_func_2b ptr_func;
17 int i = 0;
18
19 ptr_func = (t_func_2b)foo_nb;
20 if (random_value())
21 i = ptr_func(1,2); // COR ERROR: [function pointer
must point on a valid function]
22 // COR Warning: [wrong number of arguments for call
to function foo_nb(int): got 2 instead of 1]
23 }

7-60

Colored Source Code for C++

Explanation
In this example, ptr_func is a pointer to a function that takes two arguments
but it has been initialized to point to a function that only takes one.

In this case this is the associated COR warning which explains the COR
ERROR: [wrong number of arguments for call to function <name<: got <N<
instead of <M<], where <N< is the number of argument used and <M< the
number of argument waited.

Wrong Type of Argument: COR
Check to establish whether each argument passed to a function matches the
prototype of that function.

C++ Example

1 static volatile int random = 1;
2
3 int f(float f) { return 0; }
4 int g(int i) { return i; }
5
6 typedef int (*func_int)(int);
7
8 func_int ftab = (func_int)f;
9
10 void badTab(int i) {
11 ftab(++i) ; // COR ERROR: [function pointer must
point on a valid function]
12 // COR Warning: [wrong type for argument #1 of call
to function f(float)]
13 }
14
15 int main()
16 {
17 int idx = 0;
18
19 for (int i = 9; i < 10; ++ i) {
20 if (random)
21 badTab(++idx); // NTC ERROR: propagation of COR ERROR

7-61

7 Working with Results Review

22 }
23 }

Explanation
In this example, tab is an function pointer to functions which expects a float
as input argument. However, the parameter used is an int. So PolySpace
Viewer prompts the user to check the validity oh the code.

In this case, this is the associated COR warning which explains the COR
ERROR: [wrong type for argument #<N> of call to function <name>], where
<N> gives the location of the wrong argument in the function.

Pointer is Outside its Bounds: IDP
Check to establish whether the dereferenced pointer is still inbound of the
pointed object.

C++ Example

1 #define TAILLE_TAB 1024
2
3 typedef int tab[TAILLE_TAB];
4
5 class Array {
6 public:
7 Array(tab a){
8 p = a;
9 initArray();
10 }
11 void initArray(){
12 int index;
13 for (index = 0; index < TAILLE_TAB ; index++, p++) {
14 *p = 0;
15 }
16 }
17 void changeNextElementWithValue(int i){
18 *p = i; // IDP ERROR: pointer is outside its bou
19 }

7-62

Colored Source Code for C++

20
21 private:
22 int *p;
23 };
24
25
26 void main(void)
27 {
28 tab t;
29
30 Array a(t);
31 a.changeNextElementWithValue(1); // NTC ERROR:
propagation of IDP ERROR
32 }

Explanation
The pointer p is initialized to point to the first element of tab at line 4. When
the loop exits, p.

For more information, refer to the following sections:

• “Understanding Addressing ” on page 7-63

• “Understanding Pointers” on page 7-67

Understanding Addressing

• “Hardware Registers” on page 7-63

• “NULL pointer” on page 7-65

• “Comparing addresses” on page 7-66

Hardware Registers. Many code analyses exhibit orange out of bound
checks with respect to accesses to absolute addresses and/or hardware
registers.

(Also refer to the discussion on Absolute Addressing)

7-63

7 Working with Results Review

Here is an example of what such code might look like:

#define X (* ((int *)0x20000))
X = 100;
y = 1 / X; // ZDV check is orange because X ~ [-2^31, 2^31-1] permanently.

// The pointer out of bounds check is orange because 0x20000
// may address anything of any length
// NIV check is orange on X as a consequence

3 void main (void)
4 {
5 int y;
6
7 X = 100;
8 y = 1 / X;
9
10 }

int *p = (int *)0x20000;
*p = 100;
y = 1 / *p; // ZDV check is orange because *p ~ [-2^31, 2^31-1] permanently

// The pointer out of bounds is orange because 0x20000
// may address anything of any length
// NIV check on *p is orange as a consequence

This can be addressed by defining registers as regular variables:

Replace With

#define X int X;

7-64

Colored Source Code for C++

Replace With

int *p; int _p;
#define p (&_p)

Note Check that the chosen
variable name (p in this example)
does not already exist

int *p; volatile int _p;
int *p = &_p;

The “Volatile Variables” on page 3-48 discusses an approach which will
help avoid the orange check on the pointer dereference, but retains the
representation of a “full range” variable.

NULL pointer. Consider the following NULL address:

#define NULL 0

• It is illegal to dereference this 0 value

• 0 is not treated as an absolute address.

*NULL = 100; // produces a red - Illegal Dereference Pointer
(IDP)

Assuming these declarations:

int *p = 0x5;
volatile int y;

and these definitions:

#define NULL 0
#define RAM_MAX ((int *)0xffffffff)

consider the code snippets below:

7-65

7 Working with Results Review

While (p != (void *)0x1)
p--; // terminates

0x1 is an absolute address, it can be reached and the loop terminates

for (p = NULL; p <= RAM_MAX; p++)
{
*p = 0; // illegal dereference of pointer

}

At the first iteration of the loop p is a NULL pointer. Dereferencing a NULL
pointer is forbidden.

While (p != NULL)
{
p--;
*p = 0; // Orange dereference of a pointer

}

When p reaches the address 0x0, there is an attempt to considered it as an
absolute address In effect, it is an attempt to dereference a NULL pointer –
which is forbidden. Note that in this case, the check is orange because the
execution of the code here is ok (green) until 0x0 is reached (red)

The best way to address this issue depends on the purpose of the function.

• Thanks to the default behavior of PolySpace, it is easy to automatically
stub a function whose purpose is to copy data from/to RAM or to compute a
checksum on RAM.

• If a function is supposed to copy calibration data, it should also be stubbed
automatically.

• If the purpose of a function is to map EEPROM data to global variables,
then a manually written stub is essential to ensure the assignment of the
correct initialization values to them.

Comparing addresses. PolySpace only deals with the information referred
to by a pointer, and not the physical location of a variable. Consequently it
does not compare addresses of variables, and makes no assumption regarding
where they are located in memory.

7-66

Colored Source Code for C++

Consider the following two examples of PolySpace behavior:

int a,b;
if (&a > &b) // condition can be true and/or false
{ } // both branches are reachable
else
{ } // both branches are reachable

and

int x,z;
void main(void)
{ int i;
x = 12;
for (i=1; i<= 0xffffffff; i++)
{
*((int *)i) = 0;

}
z = 1 / x; // ZDV green check because PolySpace doesn't consider any

// relationship between x and its address
}

“x” is aliased by no other variable. No pointer points to “x” in this example,
so as far as the PolySpace analysis is concerned, “x” remains constantly
equal to 12.

Understanding Pointers
PolySpace doesn’t analyze anything which would require the physical address
of a variable to be taken into account.

• Consider two variables x and y. PolySpace analysis will not make a
meaningful comparison of “&x” (address of x) and “&y”

• So, the Boolean (&x < &y) can be true or false as far as PolySpace analysis
is concerned.

However, PolySpace analysis does keep track of the pointers that point to
a particular variable.

• So, if ptr points to X, *ptr and X will be synonyms.

7-67

7 Working with Results Review

• “How does malloc work for PolySpace?” on page 7-68

• “Structure Handling — Array Conversions: COR” on page 7-68

• “Structure Handling — Mapping a Small Structure into a Bigger One”
on page 7-70

How does malloc work for PolySpace?. PolySpace analysis accurately
models malloc, such that both the possible return values of a null pointer and
the requested amount of memory are taken into account.

Consider the following example.

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
*q = 'a'; // results in an orange dereference check

}

This code will avoid the orange dereference:

void main(void)
{
char *p;
char *q;
p = malloc(120);
q = p;
if (p!= NULL)
*q = 'a'; // results in a green dereference check

}

Structure Handling — Array Conversions: COR. Check to establish
whether a small array is mapped onto a bigger one through pointer cast.

7-68

Colored Source Code for C++

C++ Example

1 typedef int Big[100];
2 typedef int Small[10];
3 typedef short EquivBig[200];
4
5 Small smalltab;
6 Big bigtab;
7
8 extern int random_val();
9
10 void main(void)
11 {
12
13 Big * ptr_big = &bigtab;
14 Small * ptr_small = &smalltab;
15
16 if (random_val()){
17 Big *new_ptr_big = (Big*)ptr_small; // COR ERROR:
array conversion must not extend range
18 }
19
20 if (random_val()){
21 EquivBig *ptr_equivbig = (EquivBig*)ptr_big;
22 Small *ptr_new_small = (Small*)ptr_big; // COR Verified
23 }
24 }

Explanation

In the example above, a pointer is initialized to the Big array with the address
of a the Small array. This is not legal since it would be possible to dereference
this pointer outside of the Small array. Line 22 shows that the mapping of
arrays with same length and different prototypes is authorized.

7-69

7 Working with Results Review

Structure Handling — Mapping a Small Structure into a Bigger One.
For example, if p is a pointer to an object of type t_struct and it is initialized
to point to an object of type t_struct_bis whose size is less than the size of
t_struct, it is illegal to dereference p because it would be possible to access
memory outside of t_struct_bis. PolySpace prompts user to investigate further
by means of an orange check. See the following example.

1 #include <malloc.h>
2
3 typedef struct {
4 int a;
5 union {
6 char c;
7 float f;
8 } b;
9 } t_struct;
10
11 void main(void)
12 {
13 t_struct *p;
14
15 // optimize memory usage
16 p = (t_struct *)malloc(sizeof(int)+sizeof(char));
17
18 p->a = 1; // IDP Warning: pointer may be outside its bounds
19
20 }

logic_error is Thrown: EXC
This check determines whether a logic_error is raised.

C++ Example

1 #include <stdexcept>
2 #include <vector>
3 #include <stdio.h>
4
5 using namespace std;
6

7-70

Colored Source Code for C++

7 int maxSizeTable = 10;
8
9 class ComputerFirm : private out_of_range
10 {
11 public:
12 ComputerFirm(int number): out_of_range ("error") { // EXC
Verified: [logic_error is not thrown]
13 numberC = number;
14 };
15 int whichQuantity(int i) throw (logic_error);
16 void InitComputerFirm() throw (out_of_range);
17
18 protected:
19 unsigned int numberC ;
20 vector<int> table;
21 };
22
23 void ComputerFirm::InitComputerFirm() throw (out_of_range) // EXC
Warning: [logic_error may be thrown]
24 {
25 table.resize(numberC);
26 for (int i = 0; i < table.size(); i++) {
27 try {
28 if (i >= maxSizeTable)
29 throw out_of_range("out_of_range");
30 table[i] = 1 ;
31 }
32 catch (...){
33 throw;
34 };
35 };
36 };
37
38 int ComputerFirm::whichQuantity(int i) throw (logic_error) // EXC
ERROR: [logic_error is thrown (analysis jumps to enclosing handler)]
39 {
40 if (i > maxSizeTable)
41 throw logic_error ("logic_error");
42 return table[i];
43 }

7-71

7 Working with Results Review

44
45 void main (void)
46 {
47 try {
48 ComputerFirm* pRichardFirm = new ComputerFirm(10);
49 pRichardFirm->InitComputerFirm();
50 int q = pRichardFirm->whichQuantity(12); // EXC ERROR: [call
to whichQuantity thrown (analysis jumps to enclosing handler)]
51 }
52 catch (const exception& e) {
53 int ret = printf("error"); // display error message
54 }
55 }

Explanation
Here, a pointer of class ComputerFirm named pRichardFirm is created,
with three functions members and a vector of integers with a maximum
size of 10 elements. The class logic_error defines the type of objects thrown
as exceptions to report errors presumably detectable before the program
executes, such as violation of logical preconditions.

At line 49, InitComputerFirm is called. This function initializes all elements
to 1. In this function (line 28), the size of the created vector is checked
against the maximum authorized size. In this case, the vector’s size and the
maximum size are both equal to 10, so no logic_error is raised but due to
imprecision PolySpace does not exactly know if it is the case or not leading
to a warning message.

At line 50, a second function member is called, whichQuantity which returns
the value of the element in parameter. For this call the value is 12, greater
than the maximum size, therefore a logic error is detected. A red message is
displayed on the function definition on word throw(see line 36).

Note This check is positioned only when class logic error is found in the
source code. A code which does not include stdexcept header will not get this
useless information.

7-72

Colored Source Code for C++

runtime_error is Thrown: EXC
Check to establish that a runtime_error exception is raised.

C++ Example

1 #include <stdexcept>

2 #include <math.h>

3 #include <float.h>

4 #include <limits.h>

5 using namespace std;

6

7 static volatile int random_int = 1;

8 double maxFloat = FLT_MAX;

9 short int sInt = SHRT_MAX;

10

11

12 class RUE : runtime_error

13 {

14 public:

15 RUE() : runtime_error("rien"){}

16 RUE(double numberToAdd) : runtime_error("overflow"){ // EXC

Verified: [runtime_error is not thrown]

17 result = pow(maxFloat,maxFloat) ;

18 };

19 protected:

20 float result;

21 };

22

23

24 long addDouble(float firstOperand, int secondOperand) throw (int,runtime_error){

// EXC ERROR: [runfunction throws (analysis jumps to enclosing handler)]

25 if ((firstOperand+secondOperand) > LONG_MAX)

26 throw runtime_error("overflow");

27 else

28 return firstOperand + secondOperand;

29 }

30

31 int f(){ // EXC unreachable: [function does not throw]

32 RUE r;

7-73

7 Working with Results Review

33 throw r;

34 };

35

36 void main(void)

37 {

38 try {

39 RUE testAddition(maxFloat);

40 addDouble(maxFloat,sInt); // EXC ERROR: [call to addDouble() throws

(analysis jumps to enclosing handler)]

41 f();

42 }

43 catch (runtime_error) {

44 cout << "Error : overflow";

45 }

46 }

Explanation
The class runtime_error defines the type of objects thrown as exceptions to
report errors presumably detectable only when the program executes.

In this example, we create an object RUE with the maximum size of a float as
parameter (line 39). Its constructor can catch runtime_error. A green message
acknowledges that no runtime_error has been thrown.

We define the function addDouble (line 24) which can catch int exception
and runtime_error exception. Its definition shows that if the addition of
the two parameters is greater than the maximum size of a long integer,
a runtime_error is thrown. Indeed, in the following execution addDouble
receives as parameter the maximum size of a short integer and float. So, a
runtime_error exception is thrown (see line 26). PolySpace propagates to the
definition of the function with a runtime_error red error.

As the logic_error, PolySpace checks functions using stdexcept library.

Function throws: EXC
Check to verify that a function never raises an exception for every returned
values.

7-74

Colored Source Code for C++

C++ Example

1 #include <vector>
2
3 static volatile int random_int = 1;
4 class error{};
5
6 class InitVector
7 {
8 public:
9 InitVector (int size) {
10 sizeVector = size;
11 table.resize(sizeVector);
12 Initialisation();
13 };
14 void Initialisation ();
15 void reSize(int size);
16 int getValue(int number) throw (error);
17 int returnSize();
18 private:
19 int sizeVector;
20 vector<int> table;
21 };
22
23 void InitVector::Initialisation() { // EXC Warning: [functions
may throw]
24 int i;
25 for (i = 0; i < table.size(); i++){
26 table[i] = 0;
27 }
28 if (random_int) throw i;
29 }
30
31 void InitVector::reSize(int sizeT) {
32 table.resize(sizeT);
33 sizeVector = table.size();
34 }
35
36 int InitVector::getValue(int number) throw (error) { // EXC ERROR:
[function throws (analysis jumps to enclosing handler)]

7-75

7 Working with Results Review

37 if (number >= 0 && number < sizeVector)
38 return table[number];
39 else throw error();
40 }
41
42 int InitVector::returnSize() { // EXC Verified: [function
does not throw]
43 return table.size();
44 }
45
46 void main (void)
47 {
48 InitVector *vectorTest = new InitVector(5);
49
50 if (random_int)
51 vectorTest->returnSize();
52
53 if (random_int)
54 vectorTest->getValue(5); // EXC ERROR: [call to getValue
throws (analysis jumps to enclosing handler)]
55 }

Explanation
The class InitVector allows to create a new vector with a defined size. The
resize member function allows to change the size, without any size limit.
returnSize returns the vector’s size, and no exception can be thrown. A green
check is displayed for this function: [function does not throw].

The getValue function returns the array’s value for a given index. If the
parameter is outside vector bounds, an exception is raised. For a vector’size of
5 elements, valid index are [0..4]. At line 53, the programmers tries to access
the fifth element table[5]. An exception is raised and Polyspace displays a
red message.

Polyspace Verfier tests functions that raises exception or no, with void or
no-void type:

• always: function throws (analysis jumps to enclosing handler)

7-76

Colored Source Code for C++

• never: function does not throw

• sometimes: function may throw

When this check happens, a propagation to caller is made with another
exception check [call to <name> throws] (see line 53).

Call to Throws: EXC
Check to verify that a function call raises or not an exception.

C++ Example

1 static volatile int random_int =1 ;
2
3 class error{};
4
5 class A
6 {
7 public:
8 A() {value=9;};
9 int badReturn() throw (int);
10 int goodReturn() throw (error);
11 protected:
12 int value;
13 };
14
15 int A::badReturn() throw (int) { // EXC ERROR: [function
throws (analysis jumps to enclosing handler)]
16 if(!value)
17 return value;
18 else
19 throw 2;
20 };
21
22 int A::goodReturn() throw (error) { // EXC Verified: [function
does not throws]
23 int p = 7;
24 if (p>0)
25 return value;

7-77

7 Working with Results Review

26 else
27 throw error();
28 };
29
30 void main (void)
31 {
32 A* a = new A();
33 if(random_int)
34 a->badReturn(); // EXC ERROR: [call to badRetrun throws
(analysis jumps to enclosing handler)]
35 if(random_int)
36 a->goodReturn(); // EXC Verified: [call to goodRetrun
does not throw]
37 }

Explanation
In the first call, Polyspace proposes to caller that the function always raises
an exception because member variable value is always different from 0.

In the second call, PolySpace checks that no throw has been made in the
function because the conditional test at line 24 is always true.

Most of the time, the [call to <name> throws] is associated to [function throws]
check.

Destructor or Delete Throws: EXC
Check to establish whenever an exception is throw and not catch in a
destructor or during a delete.

C++ Example

1 #include <math.h>

2 using namespace std;

3 volatile unsigned int random_int = 1 ;

4

5 class error{};

6

7-78

Colored Source Code for C++

7 class Rectangle

8 {

9 public:

10 Rectangle(){};

11 Rectangle (unsigned int longueur, unsigned int large):

longueurRect(longueur),largeRect(large){};

12

13 virtual ~Rectangle(){ // EXC Warning: [possible throw during

destructor or delete]

14 if (!random_int)

15 throw error();

16 };

17

18 virtual double calculArea() {

19 return longueurRect * largeRect;

20 };

21

22 protected:

23 unsigned int longueurRect;

24 unsigned int largeRect;

25 };

26

27 class Cube : public Rectangle

28 {

29 public:

30 Cube():cote(3){};

31 ~Cube(){ // EXC ERROR: [throw during destructor

or delete]

32 if(random_int>=0)

33 throw error();

34 };

35 double calculArea(){

36 return pow(cote,cote);

37 };

38 protected:

39 int cote ;

40 };

41

42 void main (void)

43 {

7-79

7 Working with Results Review

44 try {

45 Rectangle* form1 = new Rectangle(10,2);

46 double k = form1->calculArea();

47

48 Cube* form2 = new Cube;

49 double l = form2->calculArea();

50

51 delete form1;

52 delete form2; // NTC ERROR: propagation of throw during

destructor

53 }

54 catch (error){

55 //raised when an error occurs in a destructor

56 }

57 catch (...){}

58 }

Explanation
In the class Cube’s destructor at line 31, an error is raised when random_int
is greater than 0. As random_int was declared as a volatile unsigned int,
this condition is always true.

At line 13, in the destructor of class Rectangle, the test on the random_int
value may be true when it is different from 0. Thus, it is possible that
the exception is raised or not in the destructor, and an orange warning is
displayed instead.

Destructors are called during stack unwinding when an exception is thrown.
In this case any exception thrown by a destructor would cause the program
to terminate. Therefore it is better programming to catch exceptions in
destructors.

Main, Tasks or C Library Function Throws: EXC
Check that functions used at C level, in a task or in main do not raise
exceptions.

7-80

Colored Source Code for C++

C++ Example

1 #include <cstdlib>
2 #include <iostream>
3 static volatile int random_int = 1;
4
5 extern "C" {
6 int compare (const void * a, const void * b) {
// EXC Verifeid:
[main, task or C library function does not throw]
7 return (*(int*)a - *(int*)b);
8 }
9 int c_compare_bad (const void *k, const void *e) {
// EXC ERROR:
[main, task or C library function throws]
10 throw 1;
11 }
12 };
13
14 typedef int arrayT[5];
15
16 class arrayToRange
17 {
18 public:
19 arrayToRange(arrayT* a) :tab(a) {};
20 arrayT* returnTabInOrder() {
21 qsort(*tab, 5, sizeof(int), compare);
22 return tab;
23 };
24 arrayT* returnTabInOrderBad() {
25 qsort(*tab, 5, sizeof(int), c_compare_bad);
26 return tab;
27 };
28 protected:
29 arrayT* tab;
30 };
31
32 void main(void) // EXC Verified: [main, task or C library
function does not throw]
33 {

7-81

7 Working with Results Review

34 try
35 {
36 arrayT tabInit = {1,3,4,2,5};
37 arrayT* table = &tabInit;
38 arrayToRange ArrayTest(table);
39 ArrayTest.returnTabInOrderBad(); // No jump to enclosing
handler
40 ArrayTest.returnTabInOrder();
41 }
42 catch (...) { // grey code
43 cout << "error raised:" << "bye"; // grey code
44 }
45 }

Explanation
In this example, we called a C stubbed function, qsort defined in the include
file cstlib, which returns a sorted array of integers. Two functions, defined in
a class called arrayToRange, call this qsort function:

• The first one, returnTabInOrder, calls qsort, with a C function pointer as
third parameter, which can not raise an exception. So PolySpace displays a
green message (line 6).

• The second one, returnTabInOrderBad, uses a C function pointer which
always raises an exception. PolySpace displays a red message on the C
function (line 9).

Limitation: even if c_compare_bad function always raise an exception,
PolySpace does not propagate to enclosing handler. Indeed at line 39, all is
green and the analysis continue even if call is surrounded by a try/catch
leading to grey code in catch block.

Exception Raised is Not Specified in the Throw List:
EXC
Check to determine whether a function has thrown a non authorized
exception.

7-82

Colored Source Code for C++

C++ Example

1 #include <string>

2

3 using namespace std;

4

5 int negative_balance = -300;

6

7 class NotPossible

8 {

9 public:

10 >_&).COR.0.error.html" name="L10-C2">NotPossible(const string & s)

: Error_Message(>_&).NIP.1.error.html" name="L10-C48">s)>_&).COR.2.error.html"

name="L10-C50">{};

11 ~NotPossible(){};

12 string Error_Message;

13 };

14

15 class Account

16 {

17 public:

18 Account(long accountInit):account(accountInit) {}

19 void debit (long amount) throw (int, char);

20 long getAccount () { return account; };

21 protected:

22 long account;

23 };

24

25 void Account::debit(long amount) throw (int, char) { //

EXC ERROR: [exception raised is not specified in the throw list]

26 if ((account - amount) < negative_balance)

27 throw NotPossible ("error");

28 account = account - amount;

29 }

30

31 void main (void)

32 {

33 try {

34 Account *James = new Account(12000);

35 James -> debit(13000); // NTC ERROR:

7-83

7 Working with Results Review

propagation of not specified exception

36 long total = James -> getAccount();

37 }

38 catch (NotPossible&){}

39 catch (...){};

40 }

41

Explanation
In the above example, the Account class is defined with the debit function
which allows to throw the specified exception. This function can only catch the
int and char exceptions. The bank authorized an overdraft of 300 euros. The
James’s account is created with an initial balance of 12000 Euros. So, at line
35, his account is debited with 13000. In the debit function, the if condition
(line 27) is true, thus a NotPossible exception is raised. Unfortunately, this
exception type is not allowed within the throw list at line 25 even if the catch
operand allows it. So PolySpace detects an error.

Throw During Catch Parameter Construction: EXC
Check to prevent throw during dynamic initialization in constructors and
during initialization of arguments in catch.

C++ Example

1 #include <string>
2
3 static volatile int random_int = 1;
4 static volatile int random_red = 0;
5
6 class error{};
7
8 class NotPossible
9 {
10 public:
11 NotPossible(const NotPossible&) // EXC ERROR: [function
throws (analysis jump to enclosing handler)]
12 {

7-84

Colored Source Code for C++

13 throw error();
14 };
15 NotPossible() // NRE ERROR: [function
throws (analysis jump to enclosing handler)]
16 {
17 throw NotPossible(7);
18 };
19 NotPossible(int){};
20 ~NotPossible(){};
21 private:
22 string Error_Message;
23 };
24
25 class Test
26 {
27 public:
28 Test(int val) : value(val){};
29 int returnVal(){
30 if (random_int)
31 throw error();
32 else
33 return value;
34 };
35 private:
36 int value;
37 };
38
39 int main() {
40
41 try {
42 Test* T = new Test(1);
43 if (random_red)
44 throw NotPossible(); // EXC ERROR: [call to
NotPossible throws (analysis jumps tp enclosing handler)]
45 else
46 T->returnVal();
47 if (random_red) {
48 NotPossible * Npos = new NotPossible(); // EXC
ERROR: [throw during dynamic initialization]
49 }

7-85

7 Working with Results Review

50 }
51 catch(NotPossible a) {} // EXC ERROR: [throw during
catch parameter conctruction]
52 catch(...) {}
53 }

Explanation
At line 48 of the previous example, during dynamic initialization of Npos, a
call to default constructor NotPossible is made. This constructor raises an
exception leading to the EXC error. Indeed, raising an exception during a
dynamic initialization is not authorized.

In same example at line 51, an exception is caught by the throw coming from
line 44. A variable of type NotPossible is created at line 48 using also same
default constructor. However, this constructor throws an integer exception
leading to red error at line 48.

Each catch clause (exception handler) is like a function that takes a single
argument of one particular type. The identifier may be used inside the
handler, just like a function argument. Moreover, the throw of an exception in
a catch block is not authorized.

Continue Execution in __except: EXC
Check to establish whether in a __except catch block the use of MACRO
EXCEPTION_CONTINUE_EXECUTION. This check can only occur using
a visual dialect.

C++ Example

1
2 #include <windows.h>
3 #include <excpt.h>
4
5 void* data;
6 struct No_Data {};
7
8 void* check_glob() { // EXC ERROR: [function throws

7-86

Colored Source Code for C++

(analysis jumps to enclosing handler)]
9 if (!data) throw No_Data(); // EXC ERROR: []
10 return data;
11 }
12
13 int main() {
14 __try {
15 data = 0;
16 check_glob(); // EXC ERROR: [call to check_glob() throws
(analysis jumps to enclosing handler)]
17 }
18 __except(data == 0
19 ? EXCEPTION_CONTINUE_EXECUTION // EXC ERROR:
[expression value is EXCEPTION_CONTINUE_EXECUTION]
20 : EXCEPTION_EXECUTE_HANDLER) {
21 data = new (void*); // Grey code
22 }
23 }

Explanation
In this example, the call to function check_glob() throws an exception. This
exception jumps to enclosing handler, in this case the __except block. Using
EXCEPTION_CONTINUE_EXECUTION, it could be possible normally to
continue analysis and comes back at line 9 as if exception never happened.
In the example, data is assigned to new value at line 21 in __except block
and no more throw will occur.

PolySpace cannot handle this kind of behavior and put a red error on the
EXCEPTION_CONTINUE_EXECUTION keyword since it has found a path
to this instruction. It results grey code at line 21 and at line 10. All other red
errors concern management of the exception: function throws and call throws].

Note It is possible to match functional behavior using volatile keyword by
replacing code at line 5: volatile void *data;

7-87

7 Working with Results Review

Unreachable Code: UNR
Check to establish whether different code snippets (assignments, returns,
conditional branches and function calls) are reached (Unreachable code is
referred to as "dead code"). Dead code is represented by means of a grey color
coding on every check and an UNR check entry.

C++ Example

1
2 typedef enum {
3 Intermediate, End, Wait, Init
4 } enumState;
5
6 // automatic stubs
7 int intermediate_state(int);
8 int random_int(void);
9
10 bool State (enumState stateval)
11 {
12 int i;
13 if (stateval == Init) return false;
14 return true;
15 }
16
17 int main (void)
18 {
19 int i;
20 bool res_end;
21 enumState inter;
22
23 res_end = State(Init);
24 if (res_end == false) {
25 res_end = State(End);
26 inter = (enumState)intermediate_state(0);
27 if (res_end || inter == Wait) { // Unreachable
code for inter == Wait
28 inter = End;
29 }
30 // use of i not initialized

7-88

Colored Source Code for C++

31 if (random_int()) {
32 inter = (enumState)intermediate_state(i); // NIV ERROR:
[non initialized variable]
33 if (inter == Intermediate) { // Unreachable
code after runtime error
34 inter = End;
35 }
36 }
37 } else {
38 i = 1; // Unreachable code
39 inter = (enumState)intermediate_state(i); // UNR check
40 }
41 return res_end;
42 }
43

Explanation
The example illustrates three possible reasons why code might be
unreachable, and hence be colored grey:

• At line 30 a conditional part of a conditional branch is always true and the
other part never evaluated because of the standard definition of logical
operator "||".

• The piece of code after a red error is never evaluated by Polyspace Verifier.
The call to the function and the following line after line 35 are considered
to be lines of dead code. Correcting the red error and re-launching would
allow the color to be revised.

• At line 27, the first branch is always evaluated to true (if-{ part) and the
other branch is never executed (else part at lines 41 to 42).

Values on Assignment: VOA
Check to establish whether the range taken by variables on assignment.
Theses checks are only available when the -voa option is used at launching
time. Moreover, they are only available on scalar variables.

7-89

7 Working with Results Review

C++ Example

1 static volatile int var_int = 1;
2 static volatile float volatile_float = 1;
3
4 #define MAX_ANA (9.999)
5 #define MIN_ANA (-10.0)
6 #define ZERO_ANA ((MAX_ANA - MIN_ANA)/2.0 - MAX_ANA)
7
8 float get_analogic (int);
9 bool get_digit (int);
10
11 typedef enum {Red, Green, Orange, Black} VerifierColor;
12
13 typedef struct {
14 float a;
15 VerifierColor b;
16 int c;
17 } Record;
18
19 int main(void)
20 {
21 bool var_digit;
22 Record var_rec;
23 int i;
24 float var_sensor;
25 VerifierColor var_color = Green; // Currently
no VOA on enum
26
27 var_digit = 0; // VOA:
{[expr]=0}
28 var_sensor = (float)(ZERO_ANA); // VOA:
{[expr] <= FLT_MAX} and {FLT_MIN <= [expr]}
29 for (i = 0 /* VOA:{[expr]=0} */ ; i < 8 ; i++) { // VOA:
{1<=[expr]<=8}
30 var_sensor = get_analogic(i); // VOA:
currently not concise
31 var_digit = get_digit(i); // VOA:
{0<=[expr]<=1}
32 }

7-90

Colored Source Code for C++

33
34 // Float examples
35 var_sensor = volatile_float; // VOA:
currently not concise
36 var_sensor = MAX_ANA; // VOA:
{[expr]=9.9989}
37
38 var_rec.a = var_sensor; // Curently
no VOA on structures
39 var_rec.b = var_color;
40 var_rec.c = 5;
41 }

Explanation
Value on assignment are an informative checks than can only be green. They
can be very helpful to understand what PolySpace knows about index of
arrays and variables. Thus, it is easier to use on orange checks.

Non Terminations: Calls and Loops
NTC and NTL are informative red checks.

• They are the only red checks which can be filtered out, as shown below

• They do not stop the analysis

• As with other red checks, code found after them are grey (unreachable)

• These checks can only be red. There are no orange NTL or NTC checks.

• They can reveal a bug, or can simply just be informative

7-91

7 Working with Results Review

Check Description

NTL In a Non Terminating Loop, the break condition is never met.
Here are some examples.
• while(1) { function_call(); }

Informative NTL.

• while(x>=0) {x++; }
Where x is an unsigned int. This may reveal a bug.

• for(i=0; i<=10; i++) my_array[i] = 10;
Where “int my_array[10];” applies. This red NTL reveals a
bug in the array access, flagged in orange.

• ptr = NULL; for(i=0; i<=100; i++) *ptr=0;
The first iteration of the loop is red, and therefore it is flagged
as an NTL. The “i++” will be grey, because the first iteration
crashed.

NTC Suppose that a function calls f(), and that function call is flagged
with a red NTC check. There could be five distinct explanations:

• “f” contains a red error.

• “f” contains an NTL.

• “f” contains an NTC.

• “f” contains an orange which is context dependant; that is,
it is either red or green. For this particular call, it makes the
function “f” crash.

• “f” is a mathematic function, such as sqrt, acos which has
always an invalid input parameter.

Remember, additional information can be found when clicking
on the NTC.

Note A sqrt check is only colored if the input parameter is nevervalid. For
instance, if the variable x may take any value between -5 and 5, then sqrt(x)
has no color.

7-92

Colored Source Code for C++

The list of constraints which cannot be satisfied (found by clicking on the NTC
check) represents the variables that cause the red error inside the function.
The (potentially) long list of variables can help to understand the cause of the
red NTC, as it shows each condition causing the NTC

• where the variable has a given value; and

• where the variable is not initialized. (Perhaps the variable is initialized
outside the set of files under analysis).

If a function is identified which is not expected to terminate (such as a loop
or an exit procedure) then the -known-NTC function is an option. You will
find all the NTCs and their consequences in the known-NTC facility in the
Viewer, allowing you to filter them.

Non Termination of Call: NTC
Check to establish whether a procedure call returns.

It is not the case when the procedure contains an endless loop or a certain
error, or if the procedure calls another procedure which does not terminate. In
the latter instance, the status of this check is propagated to caller.

C++ Example.

1
2 static volatile int _x = 1;
3
4 void foo(int x)
5 {
6 int y = 1 / x; // ZDV Warning: depends of the context
7 while(1) { // NTL ERROR: loop never terminates
8 if (y != x) {
9 y = 1 / (y-x); // ZDV Verified
10 }
11 }
12 }
13
14 void main(void) {
15
16 if (_x)

7-93

7 Working with Results Review

17 foo(0); // NTC ERROR: Zero DiVision (ZDV) in foo
18 if (_x)
19 foo(2); // NTC ERROR: Non Termination Loop (NTL) in foo
20 }
21

Explanation. In this example, the function foo is called twice in main and
neither of these 2 calls ever terminates:

• The first never returns because a division by zero occurs at line 6 (bad
argument value), and propagation of this error is propagated to caller at
line 17.

• The second never terminates because of an infinite loop (red NTL) at line
7. This error is propagated to caller at line 19.

As an inside, note that by using either the -context-sensitivity "foo" option
or the -contex-sensitivity-auto option at launch time, it is possible for
PolySpace to show explicitly that a ZDV error comes from the first call of
foo in main.

Non Termination of Loop: NTL
Check to establish whether a loop (for, do-while, while) terminates.

C++ Example.

1
2 // prototypes fo functions
3 void send_data(double data);
4 void update_alpha(double *a);
5 static volatile double _acq =0.0;
6 static volatile int start_ = 0;
7 typedef void (*pfvoid)(void);
8
9 extern void launch (pfvoid);
10
11 void task(void)
12 {
13 double acq, filtered_acq, alpha;
14

7-94

Colored Source Code for C++

15 // Init
16 filtered_acq = 0.0;
17 alpha = 0.85;
18
19 while (1) { // NTL ERROR: [non termination of loop]
20 // Acquisition
21 acq = _acq;
22 // Treatment
23 filtered_acq = acq + (1.0 - alpha) * filtered_acq;
24 // Action
25 send_data(filtered_acq);
26 update_alpha(&alpha);
27 }
28 }
29
30 void rte_loop(void)
31 {
32 int i;
33 double twentyFloat[20];
34
35 for (i = 0; i <= 20; i++) { // NTL ERROR: propagation
of OBAI ERROR
36 twentyFloat[i] = 0.0; // OBAI Warning: 20
verification with i in [0,19]
37 // and one ERROR with i = 20
38 }
39 }
40
41 void main()
42 {
43 if (start_)
44 launch(task);
45
46 rte_loop(); // NTC ERROR: propagation of NTL error
47 }

Explanation. In the example at line 19, the "continuation condition" is
always true and the loop will never exit. Thus PolySpace will raise an error.
In some case, the condition is not trivial and may depend on some program
variables. Nevertheless Verifier is still able to analyze those cases.

7-95

7 Working with Results Review

On the other error at line 35, the red OBAI related to the 21th execution of
the loop has been transformed in an orange warning because of the 20 first
verified executions.

7-96

Advanced Results Review

Advanced Results Review

In this section...

“Red Checks Where Grey Checks were Expected” on page 7-97

“Potential Side Effect of a Red Error” on page 7-99

Red Checks Where Grey Checks were Expected
By default, PolySpace continues analysis when it finds a red error. This is
used to deal with two primary circumstances:

• A red error appears in code which was expected to be dead code.

• A red error appears which was expected, but the analysis is required to
continue.

PolySpace performs an upper approximation of variables. Consequently, it
may be true that PolySpace analyses a particular branch of code as though
it was accessible, despite the fact that it could never be reached during
“real life” execution. In the example below, there is an attempt to compare
elements in an array, and PolySpace is not able to conclude that the branch
was unreachable. PolySpace may conclude that an error is present in a line
of code, even when that code cannot be reached.

Consider the figure below.

7-97

7 Working with Results Review

As a result of imprecision, each color shown can be approximated by a color
immediately above it in the grid. It is clear that green or red checks can be
approximated by orange ones, but the approximation of grey checks is less
obvious.

During PolySpace analysis, data values possible at execution time are
represented by supersets including those values - and possibly more besides.

Grey code represents a situation where no valid data values exist. Imprecision
means that such situation can be approximated

• by an empty superset;

• by a nonempty super set, members of which may generate checks of any
color.

And hence PolySpace cannot be guaranteed to find all dead code in an analysis.

However, there is no problem in having grey checks approximated by red
ones. Where any red error is encountered, all instructions which follow it in
the relevant branch of execution are aborted as usual. At execution time, it is
also true that those instructions would not be executed.

Consider the following example:

if (condition) then action_producing_a_red;

After the "if" statement, the only way execution can continue is if the
condition is false; otherwise a red checkwould be produced. Therefore,
after this branch the condition is always false. For that reason, the code
analysis continues, even with a specific error. Remember that this propagates
values throughout your application. None of the execution paths leading to
a runtime error will continue after the error and if the red check is a real
problem rather than an approximation of a grey check, then the analysis
will not be representative of how the code will behave when the red error
has been addressed.

It is applicable on the current example:

1 int a[] = { 1,2,3,4,5,7,8,9,10 };
2 void main(void)

7-98

Advanced Results Review

3 {
4 int x=0;
5 int tmp;
6 if (a[5] > a[6])
7 tmp = 1 /x; // RED ERROR [scalar division by zero] in grey code
8 }

Potential Side Effect of a Red Error
This section explains why when a red error has been found the analysis
continues but some cautions need to be taken. Consider this piece of code:

int *global_ptr;
int variable_it_points_to;

void big_red(void)
{
int r;
int my_zero = 0;
if (condition==1)
r = 1 / my_zero; // red ZDV

...

... // hundreds of lines

global_ptr = &variable_it_points_to;

other_function();

}

void other_function(void)

{

if (condition==1)

*global_ptr = 12;

}

PolySpace works by propagating data sets representing ranges of possible
values throughout the call tree, and throughout the functions in that call tree.
Sometimes, PolySpace internally subdivides the functions for analysis, and
the propagation of the data ranges need several iterations (or integration
levels) to complete. That effect can be observed by examining the color of the
checks on completion of each of those levels. It can sometimes happen that:

7-99

7 Working with Results Review

• PolySpace will detect grey code which exists due to a terminal RTE which
will not be flagged in red until a subsequent integration level.

• PolySpace flags a NTC in red with the content in grey. This red NTC is the
result of an imprecision, and should be grey.

Suppose that an NTC is hard to understand at given integration level (level 4):

• If other red checks exist at level 4, fix them and restart the analysis

• Otherwise, look back through the results from each previous level to see
whether other red errors can be located. If so, fix them and restart the
analysis

7-100

8

Options Description

Overview (p. 8-2) Describes the purpose of this chapter

Sources/Includes (p. 8-3) Describes Source and Include options

General (p. 8-6) Describes general options

Targets/Compilers (p. 8-10) Describes compiler options

Compliance with Standards (p. 8-20) Describes compliance options

PolySpace Inner Settings (p. 8-29) Describes options for PolySpace
software settings

Precision/Scaling (p. 8-39) Describes precision options

MultiTasking (PolySpace Server for
C/C++ Only) (p. 8-49)

Describes multitasking options

Specific Batch Options (p. 8-52) Describes batch options

8 Options Description

Overview
This chapter describes all options available using PolySpace Desktop
and PolySpace Verifier. All options, excepted multitasking options, are
accessible through the two graphical user interfaces “PolySpace launcher”
and “PolySpace Desktop Launcher”.

They are also accessible using the associated batch command: polyspace-cpp
and polyspace-desktop-cpp. In the following, it only refers to “polyspace-cpp”
batch command.

8-2

Sources/Includes

Sources/Includes

In this section...

“-results-dir Results_Directory” on page 8-3

“-sources files or -sources-list-file file_name” on page 8-3

“-I directory” on page 8-5

-results-dir Results_Directory
This option specifies the directory in which Verifier will write the results
of the analysis. Note that although relative directories may be specified,
particular care should be taken with their use especially where the tool is to
be launched remotely over a network, and/or where a project configuration file
is to be copied using the "Save as" option.

Default:

Shell Script: The directory in which tool is launched.

From Graphical User Interface: C:\PolySpace_Results

Example Shell Script Entry:

polyspace-cpp -results-dir RESULTS ...

export RESULTS=results_`date +%d%B_%HH%M_%A`

polyspace-cpp -results-dir `pwd`/$RESULTS ...

-sources files or -sources-list-file file_name
-sources "file1[file2[...]]" (Linux and Solaris)

or

-sources "file1[,file2[, ...]]" (windows, Linux and Solaris)

or

8-3

8 Options Description

-sources-list-file file_name (not a graphical option)

List of source files to be analyzed, double-quoted and separated by commas.
Note that UNIX standard wild cards are available to specify a number of files.

Note The specified files must have valid extensions:
*.(c|C|cc|cpp|CPP|cxx|CXX)

Defaults:

sources/*.(c|C|cc|cpp|CPP|cxx|CXX)

Example Shell Script Entry under linux or solaris (files are separated
with a white space):

polyspace-cpp -sources "my_directory/*.cpp" ...
polyspace-cpp -sources "my_directory/file1.cc other_dir/file2.cpp" ...

Example Shell Script Entry under windows (files are separated with a
comma):

polyspace-cpp -sources "my_directory/file1.cpp,other_dir/file2.cc" ...

Using -sources-list-file, each file name need to be given with an absolute path.
Moreover, the syntax of the file is the following:

• One file by line.

• Each file name is given with its absolute path.

Note This option is only available in batch mode.

Example Shell Script Entry for -sources-list-file:

polyspace-cpp -sources-list-file "C:\Analysis\files.txt"
polyspace-cpp -sources-list-file "/home/poly/files.txt"

8-4

Sources/Includes

-I directory
This option is used to specify the name of a directory to be included when
compiling C++ sources. Only one directory may be specified for each –I, but
the option can be used multiple times.

Default:

• When no directory is specified using this option, the ./sources directory (if
it exists) is automatically included

• If several include-dir are mentioned, the ./sources directory (if it exists), is
implicitly added at the end of the "-I" list

Example Shell Script Entry-1:

polyspace-cpp -I /com1/inc -I /com1/sys/inc

is equivalent to

polyspace-cpp -I /com1/inc -I /com1/sys/inc -I ./sources

Example Shell Script Entry-2:

polyspace-cpp

is equivalent to

polyspace-cpp -I ./sources

8-5

8 Options Description

General

In this section...

“Overview” on page 8-6

“-prog Session identifier” on page 8-6

“ -date Date” on page 8-7

“-author Author” on page 8-7

“-verif-version Version” on page 8-7

“-voa” on page 8-8

“-keep-all-files” on page 8-8

“-continue-with-existing-host” on page 8-8

“ -allow-unsupported-linux” on page 8-9

Overview
This section collates all options relating to the identification of the analysis,
including the destination directory for the results and sources.

-prog Session identifier
This option specifies the application name, using only the characters which
are valid for Unix file names. This information is labelled in the GUI as the
Session Identifier.

Default:

Shell Script: polyspace

GUI: New_Project

Example shell script entry:

polyspace-cpp -prog myApp ...

8-6

General

-date Date
This option specifies a date stamp for the analysis in dd/mm/yyyy format.
This information is labelled in the GUI as the Date. The GUI also allows
alternative default date formats, via the Edit/Preferences window.

Default:

Day of launching the analysis

Example shell script entry:

polyspace-cpp -date "02/01/2002"...

-author Author
This option is used to specify the name of the author of the verification.

Default:

the name of the author is the result of the whoami command

Example shell script entry:

polyspace-cpp -author "John Tester"

-verif-version Version
Specifies the version identifier of the verification. This option can be used to
identify different analyses. This information is identified in the GUI as the
Version.

Default:

1.0.

Example shell script entry:

polyspace-cpp -verif-version 1.3 ...

8-7

8 Options Description

-voa
When applied at launch time, this option enables the inspection of calculated
domains for simple type assignments (scalar or float).

A new category of checks — named VOA — is generated on "="of some scalar
assignments to give the ranges. VOA checks are not available for volatile
variables.

Default:

Disabled by default

Note Depending on code optimization, this check may not be present at all
assignment locations

Example Shell Script Entry:

polyspace-cpp -voa ...

-keep-all-files
When this option is set, all intermediate results and associated working files
are retained. Consequently, it is possible to restart Verifier from the end of
any complete pass (provided the source code remains entirely unchanged). If
this option is not used, it is only possible to restart Verifier from scratch.

By default, intermediate results and associated working files are erased when
they are no longer needed by the Verifier.

-continue-with-existing-host
When this option is set, the analysis will continue even if the system is under
specified or its configuration is not as preferred by PolySpace. Verified system
parameters include the amount of RAM, the amount of swap space, and the
ratio of RAM to swap.

Default:

8-8

General

Verifier stops when the host configuration is incorrect or the system is
under specified.

Example Shell Script Entry:

polyspace-cpp -continue-with-existing-host ...

-allow-unsupported-linux
This option specifies that PolySpace will be launched on an unsupported OS
Linux distribution.

In such case a warning is displayed in the log file against possible incorrect
behaviors:

*** ***
*** ***
*** WARNING ***
*** ***
*** You are running PolySpace Verifier on an ***
*** unsupported Linux distribution. It may lead ***
*** to incorrect behaviour of the product. Please ***
*** note that no support will be available for ***
*** this operating system. ***
*** ***
*** ***

Default:

Disabled

Example Shell Script Entry:

polyspace-cpp allow-unsupported-linux ...

8-9

8 Options Description

Targets/Compilers

In this section...

“-target TargetProcessorType” on page 8-10

“GENERIC ADVANCED TARGET OPTIONS” on page 8-11

“-OS-target OperatingSystemTarget” on page 8-15

“-D compiler-flag” on page 8-16

“-U compiler-flag ” on page 8-16

“-include file1[,file2[,...]]” on page 8-17

“-post-preprocessing-command "command"” on page 8-17

“-post-analysis-command <file_name> or "command"” on page 8-18

-target TargetProcessorType
This option specifies the target processor type, and by doing so informs
Verifier of the size of fundamental data types and of the endianess of the
target machine.

Possible values are: sparc, m68k, powerpc, i386, c-167, mcpu, or PST Generic
target.

mcpu is a reconfigurable Micro Controller/Processor Unit target. One or more
generic targets can also be specified and saved. In addition, you can analyze
code intended for an unlisted processor type using one of the listed processor
types, if they share common data properties. Refer to “Target Specifications”
on page 3-29 for more details.

For information on specifying a generic target, or modifying the mcpu target,
see “GENERIC ADVANCED TARGET OPTIONS” on page 8-11.

Note The generic target option is incompatible with any visual dialect.

Default:

8-10

Targets/Compilers

sparc

Example shell script entry:

polyspace-cpp -target m68k ...

GENERIC ADVANCED TARGET OPTIONS
The Generic target options dialog box opens when you select an mcpu target,
or a generic target.

This dialog box allows you to specify a generic "Micro Controller/Processor
Unit" or mcpu target name. Initially, it is necessary to use the GUI to specify
the name of a new mcpu target – say, “MyTarget”.

Note The generic target option is incompatible with any visual dialect.

That new target is added to the -target options list. The new target’s default
characteristics are as follows, using the type [size, alignment] format.

• char [8, 8,]

• short [16, 16]

• int [16, 16]

• long [32, 32], long long [32, 32]

• float [32, 32], double [32, 32], long double [32, 32]

• pointer [16, 16]

• char is signed

When using the command line, MyTarget is specified with all the options
for modification:

polyspace-cpp -target MyTarget

For example, a specific target uses 8 bit alignment (see also -align), for which
the command line would read:

8-11

8 Options Description

polyspace-cpp -target mcpu -align 8

-default-sign-of-char [signed|unsigned]
This option is available for all targets. It allows a char to be defined as
"signed", "unsigned", or left to assume the mcpu target’s default behavior

Default mode:

The sign of char is left to assume the target’s default behavior. By default all
targets are considered as signed except for powerpc targets.

Signed:

Disregards the target’s default char definition, and specifies that a "signed
char" should be used.

Unsigned:

Disregards the target’s default char definition, and specifies that a "unsigned
char" should be used.

Example Shell Script Entry

polyspace-cpp -default-sign-of-char unsigned -target mcpu ...

-short-is-8bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a short as 16 bits. This
option changes it to 8 bits, irrespective of sign.

It sets a short type as 8-bit without specific alignment. That has consequences
for the following:

• computation of size of objects referencing short type

• detection of short underflow/overflow

Example shell script entry

8-12

Targets/Compilers

polyspace-cpp -target mcpu -short-is-8bits

-int-is-32bits
This option is available with a generic target has been chosen.

The default configuration of a generic target defines an int as 16 bits. This
option changes it to 32 bits, irrespective of sign. Its alignment, when an int
is used as struct member or array component, is also set to 32 bits. See also
-align option.

Example shell script entry

polyspace-cpp -target mcpu -int-is-32bits

-long-long-is-64bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a long long as 32 bits.
This option changes it to 64 bits, irrespective of sign. When a long long is
used as struct member or array component, its alignment is also set to 64
bits. See also -align option.

Example shell script entry

polyspace-cpp -target mcpu -long-long-is-64bits

-double-is-64bits
This option is available when either a generic target has been chosen.

The default configuration of a generic target defines a double as 32 bits. This
option, changes both double and long double to 64 bits. When a double or
long double is used as a struct member or array component, its alignment
is set to 4 bytes.

See also -align option.

Defining the double type as a 64 bit double precision float impacts the
following:

8-13

8 Options Description

- Computation of sizeofobjects referencing double type

- Detection of floating point underflow/overflow

Example

int main(void)
{
struct S {char x; double f;};
double x;
unsigned s1, s2;
s1 = sizeof (double);
s2 = sizeof(struct S);
x = 3.402823466E+38; /* IEEE 32 bits float point maximum value */
x = x * 2;
return 0;

}

Using the default configuration of sharc21x62, C Verifier assumes that a
value of 1 is assigned to s1, 2 is assigned to s2, and there is a consequential
float overflow in the multiplication x * 2. Using the –double-is-64bits option,
a value of 2 is assigned to s1, and no overflow occurs in the multiplication
(because the result is in the range of the 64-bit floating point type)

Example shell script entry

polyspace-cpp -target mcpu -double-is-64bits

-pointer-is-32bits
This option is only available when a generic target has been chosen.

The default configuration of a generic target defines a pointer as 16 bits. This
option changes it to 32 bits. When a pointer is used as struct member or array
component, its alignment is also set also to 32 bits (see -align option).

Example shell script entry

polyspace-cpp -target mcpu -pointer-is-32bits

8-14

Targets/Compilers

-align [8|16|32]
This option is available with an mcpu generic target and some other specific
targets. It is used to set the largest alignment of all data objects to 4/2/1
byte(s), meaning a 32, 16 or 8 bit boundary respectively.

The default alignment of a generic target is 32 bits. This means that when
objects with a size of more than 4 bytes are used as struct members or array
components, they are aligned at 4 byte boundaries.

Example shell script entry with a 32 bits default alignment
polyspace-cpp -target mcpu

-align 16. If the -align 16 option is used, when objects with a size of more
than 2 bytes are used as struct members or array components, they are
aligned at 2 bytes boundaries.

Example shell script entry with a 16 bits specific alignment:

polyspace-cpp -target mcpu -align 16

-align 8. If the -align 8 option is used, when objects with a size of more
than 1 byte are used as struct members or array components, are aligned
at 1 byte boundaries. Consequently the storage assigned to the arrays and
structures is strictly determined by the size of the individual data objects
without member and end padding.

Example shell script entry with a 8 bits specific alignment:

polyspace-cpp -target mcpu -align 8

-OS-target OperatingSystemTarget
This option specifies the operating system target for PolySpace stubs.

Possible values are ’Solaris’, ’Linux’, ’VxWorks’, ’Visual’ and ’no-predefined-OS’.

This information allows the appropriate system definitions to be used during
preprocessing in order to analyze the included files properly. -OS-target
no-predefined-OS may be used in conjunction with -include or/and -D to give
all of the system preprocessor flags to be used at execution time. Details

8-15

8 Options Description

of these may be found by executing the compiler for the project in verbose
mode. They are also listed in “OS and target specifications.”

Default:

Solaris

Note Only the ’Linux’ include files are provided with PolySpace (see the
include folder in the installation directory). Projects developed for use with
other operating systems may be analyzed by using the corresponding include
files for that OS. For instance, in order to analyze a VxWorks project it is
necessary to use the option -I <<path_to_the_VxWorks_include_folder>>

Example shell script entry:

polyspace-cpp -OS-target linux
polyspace-cpp -OS-target no-predefined-OS -D GCC_MAJOR=2 /

-include /complete_path/inc/gn.h ...

-D compiler-flag
This option is used to define macro compiler flags to be used during
compilation phase.

Only one flag can be used with each –D as for compilers, but the option can be
used several times as shown in the example below.

Default:

Some defines are applied by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-cpp -D HAVE_MYLIB -D USE_COM1 ...

-U compiler-flag
This option is used to undefine a macro compiler flags

8-16

Targets/Compilers

As for compilers, only one flag can be used with each –U, but the option can be
used several times as shown in the example below.

Default:

Some undefines may be set by default, depending on your -OS-target option.

Example Shell Script Entry:

polyspace-cpp -U HAVE_MYLIB -U USE_COM1 ...

-include file1[,file2[,...]]
This option is used to specify files to be included by each C++ file involved
in the analysis.

Default:

No file is universally included by default, but directives such as "#include
<include_file.h>" are acted upon.

Example Shell Script Entry:

polyspace-cpp -include `pwd`/sources/a_file.h -include
/inc/inc_file.h ...

polyspace-cpp -include /the_complete_path/my_defines.h ...

-post-preprocessing-command "command"
When this option is used, the specified script file or command is run just
after the pre-processing phase on each source file. The script executes on
each preprocessed c files. The command should be designed to process the
standard output from pre-processing and produce its results in accordance
with that standard output.

Default:

No command.

8-17

8 Options Description

Example Shell Script Entry – file name:

To remove the key word interrupt or @near, you can type the following
command

polyspace-cpp -post-preprocessing-command
`pwd`/remove_bad_keywords.sh

where remove_bad_keywords.sh is the following script:

#!/bin/sh
sed "s/@near//g" | sed "s/interrupt//g"

Example Shell Command Entry:

This example performs the same function as that illustrated above, but
specifies the command line directly:

polyspace-cpp -post-preprocessing-command "sed s/@near//g"

Note If you are running PolySpace software version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

PolySpaceInstallDir\Verifier\tools\perl

-post-analysis-command <file_name> or "command"
When this option is used, the specified script file or command is executed once
the analysis has completed.

The script or command is executed in the results directory of the analysis.

Execution occurs after the last part of the analysis. The last part of is
determined by the–to option.

8-18

Targets/Compilers

Note Depending of the architecture used, notably when using remote
launcher, the script can be executed on the client side or the server side.

Default:

No command.

Example Shell Script Entry – file name:

This example shows how to send an email to tip the client side off that his
analysis has been ended. This example supposes that the mailx command is
available on the machine. So the command looks like:

polyspace-cpp -post-analysis-command `pwd`/end_email.sh

where end_emails.sh is the following script:

#!/bin/sh
echo analysis finished | mailx s PolySpace Analysis
ended name@domain.com

Example Shell Command Entry:

This example performs the same function as that illustrated above, but
specifies the command line directly:

polyspace-cpp -post-analysis-command "mailx s \ PolySpace
Analysis ended\ \ name@domain.com\ "

Note If you are running PolySpace software version 5.1 (r2008a) or later
on a Windows system, you cannot use Cygwin shell scripts. Since Cygwin
is no longer included with PolySpace software, all files must be executable
by Windows. To support scripting, the PolySpace installation now includes
Perl. You can access Perl in

PolySpaceInstallDir\Verifier\tools\perl

8-19

mailto:name@domain.com
mailto:name@domain.com

8 Options Description

Compliance with Standards

In this section...

“-dos” on page 8-20

“Embedded Assembler” on page 8-21

“-wchar-t-is-unsigned-long” on page 8-22

“-size-t-is-unsigned-long” on page 8-22

“-no-extern-C” on page 8-22

“-no-stl-stubs” on page 8-22

“-dialect DialectName” on page 8-23

“-wchar-t-is” on page 8-23

“-for-loop-index-scope” on page 8-24

“Visual Specific Options” on page 8-25

“-ignore-constant-overflows” on page 8-27

“-allow-undef-variables” on page 8-27

“-allow-negative-operand-in-shift” on page 8-28

“-Wall” on page 8-28

-dos

This option must be used when the contents of the include or source
directory comes from a DOS or Windows file system. It deals with upper/lower
case sensitivity and control characters issues.

Concerned files are:

• header files: all include dir specified (-I option)

• source files: all sources files selected for the analysis (-sources option)

#include "..\mY_TEst.h"^M

8-20

Compliance with Standards

#include "..\mY_other_FILE.H"^M

into

#include "../my_test.h"

#include "../my_other_file.h"

Default:

disabled by default

Example Shell Script Entry:

polyspace-cpp -I /usr/include -dos -I ./my_copied_include_dir -D test=1

Embedded Assembler
PolySpace stops the execution when detecting assembler code and displays
an error message. It can continue the execution if it is requested by the user
with the option –discard-asm.

PolySpace ignores the assembler code by assuming that the assembler code
does not have any side effect on global variables. Delimiters for assembler
code to ignore can be recognized by PolySpace following C++ standard
specified asm declarations: __asm and __asm__.

-discard-asm
This option instructs the PolySpace analysis to discard assembler code. If this
option is used, the assembler code should be modelled in c.

Default:

Embedded assembler is treated as an error.

Example Shell Script Entry:

polyspace-cpp -discard-asm ...

8-21

8 Options Description

-wchar-t-is-unsigned-long
This option modify the target model.

It forces the wchar_t type to be unsigned long.

Example Shell Script Entry:

polyspace-cpp -wchar-t-is-unsigned-long ...

-size-t-is-unsigned-long
This option modify the target model.

It forces the size_t type to be unsigned long.

Example Shell Script Entry:

polyspace-cpp -size-t-is-unsigned-long ...

-no-extern-C
Some functions may be declared inside an extern “C” { } bloc in some files and
not in others. Then, their linkage is not the same and it causes a link error
according to the ANSI standard.

Using this option will make PolySpace to ignore this error.

This permissive option may not solve all the extern C linkage errors.

Example Shell Script Entry:

polyspace-cpp -no-extern-C ...

-no-stl-stubs
PolySpace provide an efficient implementation of part of the Standard library
(STL). This implementation may not be compatible with includes files of the
applications. In that case some linking errors could arise.

With this option Verifier does not use his implementation of the STL.

8-22

Compliance with Standards

Example Shell Script Entry:

polyspace-cpp -no-stl-stubs ...

-dialect DialectName
Specifies the dialect in which the code is written. Possible values are:

default, cfront2, cfront3, iso, gnu, visual, visual6, visual7.0, visual7.1 and
visual8.

visual6 activate dialect associated with code used for Microsoft Visual 6.0
compiler and visual activates dialect associated with Microsoft Visual 7.1
and subsequent.

If the dialect is visual* (visual, visual6, visual7.0, visual7.1 and visual8)
-OS-target must be set to Visual.

If the dialect is visual* option -dos, -OS-target Visual and -discard-asm are
set by default.

visual8 dialect activates support for Visual 2005 .NET specific compiler. All
Visual 2005 .NET given include files can compile with -no-stl-stubs option
and without (recommended).

Default:

default

Example Shell Script Entry:

polyspace-cpp -dialect visual8 ...

-wchar-t-is
This option forces wchar_t to be treated as a keyword as per the C++ standard
or as a typedef as with Microsoft Visual C++ 6.0/7.x dialects.

Possible values are ’keyword’ or ’typedef ’:

8-23

8 Options Description

• typedef is the default behavior when using -dialect option associated to
visual6, visual7.0 and visual7.1.

• keyword is the default behavior for all others dialects including visual8.

This option allows the default behavior implied by the PolySpace dialect
option to be overridden.

This option is equivalent to the Visual C++ /Zc:wchar and /Zc:wchar- options.

Default:

default (depends on -dialect value).

Example in shell script:

polyspace-cpp wchar-t-is typedef

-for-loop-index-scope
This option changes the scope of the index variable declared within a for loop.

Example:

for (int index=0; ...){};
index++; // index variable is usable (out) or not (in) at this point

Possible values are ’in’ and ’out’:

• out is the default for the -dialect option associated with values cfront2,
crfront3, visual6, visual7 and visual 7.1.

• in is the default for all other dialects, including visual8.

The C++ ANSI standard specifies the index be treated as ’in’.

This option allows the default behavior implied by the PolySpace dialect
option to be overridden.

This option is equivalent to the Visual C++ options /Zc:forScopeand
Zc:forScope-.

8-24

Compliance with Standards

Default:

default (depends on –dialect value)

Example in shell script:

polyspace-cpp for-loop-index-scope in

Visual Specific Options

• “-import-dir directory” on page 8-25

• “-ignore-pragma-pack” on page 8-25

• “-pack-alignment-value value” on page 8-26

• “-support-FX-option-results” on page 8-26

-import-dir directory
One directory to be included by #importdirective. This option must be used
with -OS-target visual or -dialect visual* (6, 7.0, 7.1 and 8). It gives the
location of *.tlh files generated by a Visual Studio compiler when encounter
#import directive on *.tlb files.

Example Shell Script Entry:

polyspace-cpp -dialect visual8 -import-dir /com1/inc ...

-ignore-pragma-pack
Visual C++ #pragma directives specify packing alignment for structure,
union, and class members. These directives may be ignored to prevent link
errors using the option –ignore-pragma-pack.

PolySpace will stop the execution and display an error message if this option
is used in non visual mode or without dialect gnu (without -OS-target visual
or –dialect visual*). See also “Link messages” section.

Example Shell Script Entry:

8-25

8 Options Description

polyspace-cpp dialect visual ignore-pragma-pack ...

-pack-alignment-value value
Visual C++ /Zp option specifies the default packing alignment for a project.
Option -pack-alignment-value transfers the default alignment value to
PolySpace analysis.

The argument value must be: 1, 2, 4, 8, or 16. Analysis will stop the execution
and display an error message with a bad value or if this option is used in non
visual mode (-OS-target visual or -dialect visual* (6, 7.0 or 7.1)).

Default:

8

Example Shell Script Entry:

polyspace-cpp dialect visual pack-alignment-value 4 ...

-support-FX-option-results
Visual C++ /FX option allows the partial translation of sources making use
of managed extensions to Visual C++ sources without managed extensions.
Theses extensions are currently not taken into account by PolySpace and can
be considered as a limitation to analyze this kind of code.

Using /FX, the translated files are generated in place of the original ones in
the project, but the names are changed from foo.ext to foo.mrg.ext.

Option – support-FX-option-results allows the analysis of a project containing
translated sources obtained by compilation of a Visual project using the
/FX Visual option. Managed files need to be located in same directory than
original ones and PolySpace will analyses managed files instead of the
original ones without intrusion, and will permit to remove part of limitations
due to specific extensions.

PolySpace will stop the execution and display an error message if this option
is used in non visual mode (-OS-target visual or -dialect visual* (6, 7.0 or 7.1)).

8-26

Compliance with Standards

Example Shell Script Entry:

polyspace-cpp dialect visual - support-FX-option-results

-ignore-constant-overflows
This option specifies that the analysis should be permissive with regards to
overflowing computations on constants. Note that it deviates from the ANSI
C standard.

For example,

char x = 0xff;

causes an overflow according to the standard, but if it is analyzed using this
option it becomes effectively the same as

char x = -1;

With this second example, a red overflow will result irrespective of the use
of the option.

char x = (rnd?0xFF:0xFE);

Default:

char x = 0xff; causes an overflow

Example Shell Script Entry:

polyspace-cpp -ignore-constant-overflows ...

-allow-undef-variables
When this option is used, PolySpace will continue in case of linkage errors
due to undefined global variables. For instance when this option is used,
PolySpace will tolerate a variable always being declared as extern

Default:

8-27

8 Options Description

Undefined variables causes PolySpace to stop.

Example Shell Script Entry:

polyspace-cpp -allow-undef-variables ...

-allow-negative-operand-in-shift
This option allows a shift operation on a negative number.

According to the ANSI standard, such a shift operation on a negative number
is illegal – for example,

-2 << 2

With this option in use, PolySpace considers the operation to be valid. In the
previous example, the result would be
-2 << 2 = -8

Default:

A shift operation on a negative number causes a red error.

Example Shell Script Entry:

polyspace-cpp -allow-negative-operand-in-shift ...

-Wall
Force the C++ compliance phase to print all warnings.

Default:

By default, only warnings about compliance across different files are printed.

Example Shell Script Entry:

polyspace-cpp -Wall ..

8-28

PolySpace Inner Settings

PolySpace Inner Settings

In this section...

“-main sub_program_name” on page 8-29

“Generate a Main Using a Given Class” on page 8-30

“-main-generator-calls” on page 8-32

“General options for the generation of mains” on page 8-33

“-no-automatic-stubbing ” on page 8-35

“-ignore-float-rounding” on page 8-35

“-detect-unsigned-overflows” on page 8-37

“-extra-flags option-extra-flag” on page 8-37

“-cpp-extra-flags flag” on page 8-38

-main sub_program_name
The option specifies the qualified name of the main subprogram when a
visual –OS-targetis selected. This procedure will be analyzed after class
elaboration, and before tasks in case of a multitask application or in case of
the -entry-points usage.

Possible values are:

main, _tmain, wmain, _tWinMain, wWinMain, WinMain and DllMain.

However, if the main subprogram does not exist and the option
-main-generatoris not set, PolySpace will stop the analysis with an error
message.

Default:

main

Example Shell script entry:

polyspace-cpp -main WinMain OS-target visual

8-29

8 Options Description

Generate a Main Using a Given Class

• “-class-analyzer” on page 8-30

• “-class-only” on page 8-30

• “-class-analyzer-calls” on page 8-31

• “-no-constructors-init-check” on page 8-31

-class-analyzer
PolySpace C++ is a class analyzer. The user needs to know which part of his
design he wants to analyze. The user has two alternatives:

• If a main program exists in the set of files given to the PolySpace analysis,
then the analysis continue with this main

• Otherwise the user MUST specify one class name

PolySpace Verifier and Desktop have the same facility. You can choose or not
to provide a main in your application, and select one class instead.

If MyclassName does not exist in the application, analysis stops also. All
public and protected function members declared within the class, called within
the code or not, will be analyzed separately and called by a generated main.

This generated main, is not code compliant but visible in the graphical
user interface within __polyspace_main.cpp file. It also initializes all global
variables to random (see Getting started section).

Example shell script entry:

polyspace-cpp class-analyzer MyClass
polyspace-desktop-cpp class-analyzer MyNamespace::MyClass

-class-only
This option can only be used with option –class-analyzer MyClass. If
option –class-analyzer is not used, Analysis stops and displays an error
message. With the option –class-only, only functions associated to MyClass
are analyzed. All functions out of class scope are automatically stubbed even
though they are defined in the source code.

8-30

PolySpace Inner Settings

Default:

disable

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass class-only...

-class-analyzer-calls
This option can only be used with option –class-analyzer MyClass. If option
–class-analyzer is not used, Analysis stops and displays an error message.

• By default, all public and protected function members declared within the
class, called within the code or not, will be analyzed separately and called
by a generated main. We call in this case of eligible method or functions.

• If unused is specified, only functions not called by another eligible function
are called.

Default:

default is used

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass class-analyzer-calls
unused ...

-no-constructors-init-check
By default, PolySpace checks for member initialization just after object
construction and initialization with -function-called-before-mainwhen using
–class-analyzer.

This option can only be used with option –class-analyzer. If option
–class-analyzer is not used, analysis stops and displays an error message.

Without this option, in the generated main in __polyspace_main.cpp file, you
will find some added code checks like on the simple example below using
–class-analyzer A options:

8-31

8 Options Description

class A {
public: int i ; int *j ;
A() : i(0), j(0) { ; }

A(int a) : i(a) { ; }
};

In __polyspace_main.cpp after a call to the constructor(s) and function called
before main:

{ /* check NIV/NIP section */
check_NIV(__polyspace_this->i); // Proven NIV check
check_NIP(__polyspace_this->j); // Unproven NIP check: j is not

initialized in one constructor
}

Using the option, no more check of members is made.

Default:

Check is made for member scalars, floats and pointer member variables.

Example Shell Script Entry:

polyspace-cpp class-analyzer MyClass no-constructors-init-check
...

-main-generator-calls
This option is used with the -main-generator option, to specify the functions
to be called.

Note that this option is protected by a license.

Eligible functions:

Every function declared outside a class and defined in the source code to
analyze, is considered as eligible when using the option.

The list of functions contains a list of short name (name without signature)
separated by comas. If the name of a function from the list is associated to

8-32

PolySpace Inner Settings

a function not defined in the source code, PolySpace stops and displays an
error message. If the name of a function from the list is ambiguous, all the
functions with the same short name are called. If a function from the list does
not belong or is not eligible, PolySpace stops and displays an error message.
This error message is put in the log file.

Default values:

• none – No function is called. This can be used with a multitasking
application without main for instance.

• unused (default) – Call all functions not already called within the code.
Inline functions will not be called by the generated main.

• all – all functions except inline will be called by the generated main.

• custom – Only functions present in the list are called from the main. Inline
functions can be specified in the list and will be called by the generated
main.

An inline (static or extern) function is not called by the generated main
program with values all or unused. An inline function can only be called with
custom value: -main-generator-calls custom=my_inlined_func.

Example:

polyspace-cpp -main-generator -main-generator-calls
custom=function_1,function_2

General options for the generation of mains

• “-function-called-before-main” on page 8-33

• “-main-generator-writes-variables” on page 8-34

-function-called-before-main
This option is used with the main generator options –class-analyzer and
–main-generator-calls options to specify a function which will be called before
all selected functions in the main.

8-33

8 Options Description

Eligible functions:

Every function or method defined in the source code to analyze is considered
as eligible when using the option.

If the given name is ambiguous or is associated to a function not defined in
the source code, PolySpace stops and displays an error message. This error
message is put in the log file.

Example:

polyspace-cpp -main-generator-calls unused
function-called-before-main MyFunction

-main-generator-writes-variables
This option is used with the main generator options –class-analyzerand
–main-generator-callsto dictate how the generated main will initialize global
variables.

Settings available:

• uninit – main generator writes random on not initialized global variables.

• none – no global variable will be written by the main.

• public – every variable except static and const variables are assigned a
“random” value, representing the full range of possible values

• all – every variable is assigned a “random” value, representing the full
range of possible values

• custom – only variables present in the list are assigned a “random” value,
representing the full range of possible values

Example

polyspace-cpp class-analyzer MyClass
-main-generator-writes-variables uninit

polyspace-cpp -main-generator -main-generator-writes-variables
custom=variable_a,variable_b

8-34

PolySpace Inner Settings

-no-automatic-stubbing
By default, PolySpace automatically stubs all functions. When this option
is used, the list of functions to be stubbed is displayed and the analysis is
stopped.

Benefits:

This option may be used where

• The entire code is to be provided, which may be the case when analyzing
a large piece of code. When the analysis stops, it means the code is not
complete.

• Manual stubbing is preferred to improve the selectivity and speed of the
analysis.

Default:

All functions are stubbed automatically

-ignore-float-rounding
Without this option, PolySpace rounds floats according to the IEEE 754
standard: simple precision on 32-bits targets and double precision on
target which define double as 64-bits. With the option, exactcomputation
is performed.

Example

1
2 void ifr(float f)
3 {
4 double a = 1.27;
5 if ((double)1.27F == a) {
6 assert (1);
7 f = 1.0F * f;
8 // reached when -ignore-float-rounding is used or not
9 }
10 else {
11 assert (1);

8-35

8 Options Description

12 f = 1.0F * f;
13 // reached when compiled under Visual and when
-ignore-floatrounding is not used
14 }
15 }

Using this option can lead to different results compared to the "real life"
(compiler and target dependent): Some paths will be reachable or not for
PolySpace while they are not (or are) depending of the compiler and target. So
it can potentially give approximate results (green should be unproven). This
option has an impact on OVFL/UVFL checks on floats.

However, this option allows reducing the number of unproven checks because
of the “delta” approximation.

For example:

• FLT_MAX (with option set) = 3.40282347e+38F

• FLT_MAX (following IEEE 754 standard) = 3.40282347e+38F ± Δ

1
2 void ifr(float f)
3 {
4 double a = 1.27;
5 if ((double)1.27F == a) {
6 assert (1);
7 f = 1.0F * f; // Overflow never occurs because f <= FLT_MAX.
8 // reached when -ignore-float-rounding is used
9 }
10 else {
11 assert (1);
12 f = 1.0F * f; // OVFL could occur when f = (FLT_MAX + D)
13 // reached when -ignore-float-rounding is not used
14 }
15 }

Default:

IEEE 754 rounding under 32 bits and 64 bits.

8-36

PolySpace Inner Settings

Example Shell Script Entry:

polyspace-cpp -ignore-float-rounding ...

-detect-unsigned-overflows
When this option is selected, PolySpace becomes more pedantic than the
ANSI standard requires, with regards overflowing computations on unsigned.
Consider the examples below, which apply when the option is in use.

Example 1:

unsigned char x;
x = 255;
x = x+1; //causes an overflow according to this option.

Without this option in place, example above would generate no error.

unsigned char x;
x = 255;
x = x+1; // turns x into 0 (wrap around).

Example 2:

unsigned char x, y=1;
x = ~y; // causes an overflow because of type promotion

Default:

disable

Example Shell Script Entry:

polyspace-cpp-detect-unsigned-overflows ...

-extra-flags option-extra-flag
This option specifies an expert option to be added to the analyzer. Each word
of the option (even the parameters) must be preceded by -extra-flags.

8-37

8 Options Description

These flags will be given to you by PolySpace Support as necessary for your
analyses.

Default:

No extra flags.

Example Shell Script Entry:

polyspace-cpp -extra-flags -param1 -extra-flags -param2

-cpp-extra-flags flag
It specifies an expert option to be added to a PolySpace C++ analysis. Each
word of the option (even the parameters) must be preceded by -cpp-extra-flags.

These flags will be given to you by PolySpace support as necessary.

Default:

no extra flags.

Example Shell Script Entry:

polyspace-cpp -cpp-extra-flags -Wall

8-38

Precision/Scaling

Precision/Scaling

In this section...

“-quick” on page 8-39

“-O(0-3)” on page 8-40

“-from verification-phase” on page 8-41

“-to verification-phase” on page 8-42

“-path-sensitivity-delta number” on page 8-43

“-context-sensitivity "proc1[,proc2[,...]]"” on page 8-44

“-context-sensitivity-auto” on page 8-44

“-respect-types-in-globals” on page 8-44

“-k-limiting number ” on page 8-45

“-respect-types-in-fields” on page 8-45

“-inline "proc1[,proc2[,...]]"” on page 8-46

“Tuning Precision and Scaling parameters” on page 8-47

-quick
This option is used to select a very fast mode for PolySpace C++. This option
cannot be used with the -O(0-3), -from, -to and -modules-precision options.

Benefits
This option allows results to be generated very quickly. These are suitable for
initial analysis of red and grey errors only, as orange checks are too plentiful
to be relevant using this option.

Quick mode is up to 25 times faster than a typical analysis using a specified
combination of precision level and integration level.

Limitations

• No NTL or NTC are displayed (non termination of loop/call)

8-39

8 Options Description

• The variable dictionary is not available

• No check is performed on floats

• The call tree is available but navigation is not possible

• Orange checks are too plentiful to be relevant
Example shell entry:

polyspace-cpp -quick

-O(0-3)
This option specifies the precision level to be used. It provides higher
selectivity in exchange for more analysis time, therefore making results
review more efficient and hence making bugs in the code easier to isolate. It
does so by specifying the algorithms used to model the program state space
during analysis.

It is recommended that analyses should begin with the -quick option. Red
errors and grey code can then be addressed before re-launching Verifier using
this option, applying a precision level as described below.

Benefits:

• A higher precision level contributes to a higher selectivity rate, making
results review more efficient and hence making bugs in the code easier to
isolate.

• A higher precision level also means higher analysis time

- -O0 corresponds to static interval analysis.

- -O1 corresponds to complex polyhedron model of domain values.

- -O2 corresponds to more complex algorithms to closely model domain
values (a mixed approach with integer lattices and complex polyhedrons).

- -O3 is only suitable for code smaller than 1000 lines of code. For such
codes, the resulting selectivity might reach high values such as 98%,
resulting in a very long analysis time, such as an hour per 1000 lines
of code.

Default:

8-40

Precision/Scaling

-O2

Example Shell Script Entry:

polyspace-cpp -O1 -to pass4 ...

-from verification-phase
This option specifies the verification phase to start from. It can only be used
on an existing analysis, possibly to elaborate on the results that you have
already obtained.

For example, if an analysis has been completed -to pass1, PolySpace can be
restarted -from pass1 and hence save on analysis time.

The option is usually used in an analysis after one run with the -to option,
although it can also be used to recover after power failure.

Possible values are as described in the -to verification-phase section, with the
addition of the scratch option.

Note

• Unless the scratch option is used, this option can be used only if the
previous analysis was launched using the option -keep-all-files .

• This option cannot be used if you modify the source code between analyses.

Default :

From scratch

Example Shell Script Entry :

polyspace-cpp -from c-to-il ...

8-41

8 Options Description

-to verification-phase
This option specifies the verification phase after which the Verifier will stop.

Benefits:

This option provides improved selectivity, making results review more
efficient and making bugs in the code easier to isolate.

• A higher integration level contributes to a higher selectivity rate, leading to
"finding more bugs" with the code.

• A higher integration level also means higher analysis time

Possible values:

• cpp-compliance (Reaches the compilation phase)

• cpp-normalize (Reaches the normalization phase)

• cpp-link (Reaches the link phase)

• cpp-to-il (Reaches the transformation to intermediate language)

• pass0 or CDFA or "Control and Data Flow Analysis"

• pass1 or "Software Safety Analysis level 1"

• pass2 or "Software Safety Analysis level 2"

• pass3 or "Software Safety Analysis level 3"

• pass4 or "Software Safety Analysis level 4"

• other (stop analysis after level 20)

Note If you use -to other then PolySpace will continue until you stop it
manually (via "PolySpace Install Directory"/bin/kill-rte-kernel "Results
directory"/"log file name") or stops until it has reached pass20.

Default:

pass4

8-42

Precision/Scaling

Example Shell Script Entry:

polyspace-cpp -to "Software Safety Analysis level 3"...

polyspace-cpp -to pass0 ...

-path-sensitivity-delta number
This option is used to improve interprocedural analysis precision within a
particular pass (see -to pass1, pass2, pass3 or pass4). The propagation of
information within procedures is done earlier than usual when this option is
specified. That results in improved selectivity and a longer analysis time.

Consider two analyses, one with this option set to 1 (with), and one without
this option (without)

• a level 1 analysis in (with) (pass1) will provide results equivalent to level 1
or 2 in the (without) analysis

• a level 1 analysis in (with) can last x times more than a cumulated level
1+2 analysis from (without). "x" might be exponential.

• the same applies to level 2 in (with) equivalent to level 3 or 4 in (without),
with potentially exponential analysis time for (a)

Gains using the option

• (+) highest selectivity obtained in level 2. no need to wait until level 4

• (-) This parameter increases exponentially the analysis time and might be
even bigger than a cumulated analysis in level 1+2+3+4

• (-) This option can only be used with less than 1000 lines of code

Default:

0

Example Shell Script Entry:

polyspace-cpp -path-sensitivity-delta 1 ...

8-43

8 Options Description

-context-sensitivity "proc1[,proc2[,...]]"
This option allows the precise analysis of a procedure with regards to the
discrete calls to it in the analyzed code.

Each check inside the procedure is split into several sub-checks depending
on the context of call. Therefore if a check is red for one call to the procedure
and green for another, both colors will be revealed.

This option is especially useful is a problem function is called from a multitude
of places.

-context-sensitivity-auto
This option is similar to the -context-sensitivity option, except that the system
automatically chooses the procedures to be considered.

Usually, the ten functions which are the most called are automatically
selected.

-respect-types-in-globals
This is a scaling option, designed to help process complex code. When it is
applied, PolySpace assumes that global variables not declared as containing
pointers are never used for holding pointer values. This option should only
be used with Type-safe code, when it does not cause a loss of precision. See
also -respect-types-in-fields.

In the following example, we will lose precision using option
–respect-types-in-globals option:

int x;
void t1(void) {
int y;
int *tmp = &x;
*tmp = (int)&y;
y=0;
(int)x = 1; // x contains address of y
assert (y == 0); // green with the option

}

8-44

Precision/Scaling

PolySpace will not take care that x contains the address of y resulting a
green assert.

Default:

PolySpace assumes that global variables may contain pointer values.

Example Shell Script Entry:

polyspace-cpp -respect-types-in-globals ...

-k-limiting number
This is a scaling option to limits the depth of analysis into nested structures
during pointer analysis (see tuning parameters).

This option is only available for PolySpace C and C++.

Default:

There is no fixed limit.

Example Shell Script Entry:

polyspace-cpp -k-limiting 1 ...

In this example above, analysis will be precise to only one level of nesting.

-respect-types-in-fields
This is a scaling option, designed to help process complex code. When it is
applied, PolySpace assumes that structure fields not declared as containing
pointers are never used for holding pointer values. This option should only
be used with Type-safe code, when it does not cause a loss of precision. See
also -respect-types-in-globals .

In the following example, we will lose precision using option
respect-types-in-fields option:

struct {

8-45

8 Options Description

unsigned x;
int f1;
int *z[2];

} S1;

void funct2(void) {
int *tmp;
int y;
((int**)&S1)[0] = &y; /* S1.x points on y */
tmp = (int*)S1.x;
y=0;
tmp = 1; / write 1 into y */
assert(y==0);

}

PolySpace will not take care that S1.x contains the address of y resulting a
green assert.

Default:

PolySpace assumes that structure fields may contain pointer values.

Example Shell Script Entry:

polyspace-cpp -respect-types-in-fields ...

-inline "proc1[,proc2[,...]]"
A scaling option that creates a clone of a each specified procedure for each
call to it.

Cloned procedures follow a naming convention viz:

procedure1_pst_cloned_nb,

where nb is a unique number giving the total number of cloned procedures.

Such an inlining allows the number of aliases in a given procedure to be
reduced, and may also improve precision.

8-46

Precision/Scaling

It is some times recommended to inline standard functions permitting to
make copy or set amount of memory, such as “memset”, “strcpy”, “strncpy”,
“memcpy”, etc.

It can permit to find in an easy way run time errors (NTC for instance) which
relate in this case the copy or set of a big structure in a smaller one.

Restrictions :

• Extensive use of this option may duplicate too much code and may lead to
other scaling problems. Carefully choose procedures to inline.

• This option should be used in response to the inlining hints provided by the
alias analysis (log file some times can give such kind of information).

• This option should not be used on main, task entry points and critical
section entry points.

• When using this option with a method of a class, all overload of the method
will apply to the inline.

Example Shell Script Entry:

polyspace-cpp inline myclass::myfunc …

Tuning Precision and Scaling parameters

Precision versus Time of Analysis
There is a compromise to be made to balance the time required to obtain
results, and the precision of those results. Consequently, launching PolySpace
with the following options will allow the time taken for analysis to be reduced
but will compromise the precision of the results. It is suggested that the
parameters should be used in the sequence shown - that is, if the first
suggestion does not increase the speed of analysis sufficiently then introduce
the second, and so on.

• switch from -O2 to a lower precision;

• set the -respect-types-in-globalsand -respect-types-in-fields options;

• set the -k-limiting option to 2, then 1, or 0;

8-47

8 Options Description

• stub manually missing functions which write into their arguments.

Precision versus Code Size
PolySpace can make approximations when computing the possible values of
the variables, at any point in the program. Such an approximation will always
use a superset of the actual possible values.

For instance, in a relatively small application, PolySpace Verifier might retain
very detailed information about the data at a particular point in the code, so
that for example the variable VAR can take the values { -2; 1; 2; 10; 15; 16;
17; 25 }. If VAR is used to divide, the division is green (because 0 is not a
possible value). If the program being analyzed is large, PolySpace Verifier
would simplify the internal data representation by using a less precise
approximation, such as [-2; 2] U {10} U [15 ; 17] U {25} . Here, the same
division appears as an orange check.

If the complexity of the internal data becomes even greater later in the
analysis, PolySpace might further simplify the VAR range to (say) [-2; 20].

This phenomenon leads to the increase or the number of orange warnings
when the size of the program becomes large.

Note The amount of simplification applied to the data representations also
depends on the required precision level (O0, O2), PolySpace Verifier will
adjust the level of simplification:

• -O0 and -quick: shorter computation time. You only need to focus on red
and grey checks.

• -O2: less orange warnings.

• -O3: less orange warnings and bigger computation time.

8-48

MultiTasking (PolySpace Server for C/C++ Only)

MultiTasking (PolySpace Server for C/C++ Only)

In this section...

“-entry-points str1[,str2[,...]]” on page 8-49

“-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"” on page 8-49

“-temporal-exclusions-file file_name” on page 8-50

Note Concurrency options are not compatible with -main-generator options.

-entry-points str1[,str2[,...]]
This option is used to specify the tasks/entry points to be analyzed by
PolySpace, using a Comma-separated list with no spaces.

These entry points must not take parameters. If the task entry points are
functions with parameters they should be encapsulated in functions with no
parameters, with parameters passed through global variables instead.

Format:

• All tasks must have the prototype “void any_name() .

• It is possible to declare a member function as an entry point of an analysis,
only and only if the function is declared “static void task_name()”.

Example Shell Script Entry:

polyspace-cpp -entry-points class::task_name,taskname,proc1,proc2

-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
-critical-section-begin "proc1:cs1[,proc2:cs2]"

and

-critical-section-end "proc3:cs1[,proc4:cs2]"

8-49

8 Options Description

These options specify the procedures beginning and ending critical sections,
respectively. Each uses a list enclosed within double speech marks, with list
entries separated by commas, and no spaces. Entries in the lists take the
form of the procedure name followed by the name of the critical section, with a
colon separating them.

These critical sections can be used to model protection of shared resources,
or to model interruption enabling and disabling.

Limitation:

• Name of procedure accept only void any_name() as prototype.

• The beginning and the end of the critical section need to be defined in same
block of code.

Default:

no critical sections.

Example Shell Script Entry:

polyspace-cpp -critical-section-begin "start_my_semaphore:cs" \

-critical-section-end "end_my_semaphore:cs"

-temporal-exclusions-file file_name
This option specifies the name of a file. That file lists the sets of tasks which
never execute at the same time (temporal exclusion).

The format of this file is :

• one line for each group of temporally excluded tasks,

• on each line, tasks are separated by spaces.

Default:

No temporal exclusions.

8-50

MultiTasking (PolySpace Server for C/C++ Only)

Example Task Specification file

File named ’exclusions’ (say) in the ’sources’ directory and containing:

task1_group1 task2_group1

task1_group2 task2_group2 task3_group2

Example Shell Script Entry :

polyspace-cpp -temporal-exclusions-file sources/exclusions \

-entry-points task1_group1,task2_group1,task1_group2,\

task2_group2,task3_group2 ...

8-51

8 Options Description

Specific Batch Options

In this section...

“-server server_name_or_ip[:port_number]” on page 8-52

“-sources-list-file file_name” on page 8-53

“-v | -version” on page 8-53

“-h[elp]” on page 8-53

-server server_name_or_ip[:port_number]
Using polyspace-remote[-desktop]-[ada] [server [name or IP
address][:<port number>]] allows to send analysis to a specific or
referenced PolySpace Queue manager server.

Note If the option –server is not specified, the default server referenced in
the PolySpace-Launcher.prf configuration file will be used as server.

When a –server option is associated to the batch launching command, the
name or IP address and a port number need to be specified. If the port number
does not exist, the 12427 value will be used by default.

Note polyspace-remote- accepts all other options.

Option Example Shell Script Entry:

polyspace-remote-desktop-cpp server 192.168.1.124:12400

polyspace-remote-cpp

polyspace-remote-cpp server Bergeron

8-52

Specific Batch Options

-sources-list-file file_name
This option is only available in batch mode. The syntax of file_name is the
following:

• One file per line.

• Each file name includes its absolute or relative path.

Example Shell Script Entry for -sources-list-file:

polyspace-cpp -sources-list-file "C:\Analysis\files.txt"

polyspace-cpp -sources-list-file "/home/poly/files.txt"

-v | -version
Display the PolySpace version number.

Example Shell Script Entry:

polyspace-cpp v

It will show a result similar to:

PolySpace r2008a

Copyright (c) 1999-2008 The Mathworks Inc.

-h[elp]
Display in the shell window a simple help in a textual format giving
information on all options.

Example Shell Script Entry:

polyspace-cpp h

8-53

8 Options Description

8-54

A

Static Verification

What is Static Verification (p. A-2) Describes static verification

Exhaustiveness (p. A-4) Describes the thoroughness of static
verification

A Static Verification

What is Static Verification
Static Verification is a broad term, and is applicable to any tool which derives
dynamic properties of a program without actually executing it. Static
Verification differs significantly from other techniques, such as run-time
debugging, in that the analysis it provides is not based on a given test case or
set of test cases. The dynamic properties obtained in the PolySpace analysis
are true for all executions of the software.

Most Static Verification tools only provide an analysis of the complexity of the
software, in a search for constructs which may be potentially dangerous.

PolySpace provides deep-level analysis identifying almost all run-time errors
and possible access conflicts on global shared data.

The idea is to use an approximation of the software under analysis, using safe
and representative approximations of software operations and data.

An example is given below:

for (i=0 ; i<1000 ; ++i)
{ tab[i] = foo(i);
}

To check that the variable ’i’ never overflows the range of ’tab’ a traditional
approach would be to enumerate each possible value of ’i’. One thousand
checks would be needed.

Using the static verification approach, the variable ’i’ is modelled by its
variation domain. For instance the model of ’i’ is that it belongs to the [0..999]
static interval. (Depending on the complexity of the data, convex polyhedrons,
integer lattices and more elaborated models are also used for this purpose).

Any approximation leads by definition to information loss. For instance,
the information that ’i’ is incremented by one every cycle in the loop is lost.
However the important fact is that this information is not required to ensure
that no range error will occur; it is only necessary to prove that the variation
domain of ’i’ is smaller than the range of ’tab’. Only one check is required
to establish that - and hence the gain in efficiency compared to traditional
approaches.

A-2

What is Static Verification

Static code verification has an exact solution but it is generally not practical,
as it would in general require the enumeration of all possible test cases. As a
result, approximation is required if a usable tool is to result.

A-3

A Static Verification

Exhaustiveness
Nothing is lost in terms of exhaustiveness. The reason is that PolySpace
works by performing upper approximations. In other words, the computed
variation domain of any program variable is always a superset of its actual
variation domain. The direct consequence is that no run time error (RTE)
item to be checked can be missed by PolySpace.

A-4

Glossary

Glossary

Analysis
In order to use a PolySpace™ tool, the code is prepared and an analysis
is launched which is turn produces results for review.

Atomic
In computer programming, atomic describes a unitary action or object
that is essentially indivisible, unchangeable, whole, and irreducible.

Atomicity
In a transaction involving two or more discrete pieces of information,
either all of the pieces are committed or none are.

Batch mode
Execution of PolySpace from the command line, rather than via the
launcher Graphical User Interface.

Category
One of four types of orange check: potential bug, inconclusive check,
data set issue and basic imprecision

Certain error
See red error

Check
Test performed by PolySpace during analysis, colored red, orange, green
or grey in the viewer

Dead Code
Code which is inaccessible at execution time under all circumstances,
due to the logic of the software executed before it.

Development Process
Development process used within a company to progress through the
software development lifecycle.

Green check
Check found to be confirmed as error free.

Glossary-1

Glossary

Grey code
Dead code.

Imprecision
Approximations made during PolySpace™ analysis, so that data values
possible at execution time are represented by supersets including those
values

mcpu
Micro Controller/Processor Unit

Orange warning
Check found to represent a possible error, which may be revealed on
further investigation.

PolySpace™ Approach
The manner of use of PolySpace to achieve a particular goal, with
reference to a collection of techniques and guiding principles.

Precision
An analysis which includes few inconclusive orange checks is said to be
precise

Progress text
Output from PolySpace during analysis to indicate what proportion of
the analysis has been completed. Could be considered as a “textual
progress bar”.

Red error
Check found to represent a definite error

Review
Inspection of the results produced by a PolySpace™ analysis, using
the Viewer.

Scaling option
Option applied when an application submitted to PolySpace™ Verifier
proves to be bigger or more complex than is practical.

Glossary-2

Glossary

Selectivity
The ratio of (green + grey + red) / (total amount of checks)

Unreachable code
Dead code

Glossary-3

	PolySpace Client/Server for C++ User's Guide
	PolySpace Documentation Set
	About this Guide
	How to Use this Guide
	Analyzing One Class
	Analyzing a Class from Microsoft ® Visual Studio
	Analyzing a Class on a Server
	Analyzing Code from UML Models
	Detailed Contents

	Getting Started
	General Requirements
	Computer Configuration
	Timing Information
	Installation Guide
	Structure of this Document

	Step 1: PolySpace Client – Setting Up and Launching an Analysis
	Overview
	Analysis Prerequisites
	Setting Up a PolySpace Client Analysis
	PolySpace Client: Running the Analysis
	Starting the Analysis
	Parsing Errors During Preliminary Analysis Stages
	Progression of the Analysis
	End of the Analysis

	Step 2: Class Analyzer
	PolySpace Class Analyzer Overview
	Sources to be Analyzed
	Architecture of the Generated main

	Log File
	Log File Overview
	Characteristics of a Class and Messages of the Log File

	Behavior of Global variables and members
	Global Variables
	Data Members of Other Classes

	Methods and Classes Specificities
	Template
	Abstract Classes
	Static Classes
	Inherited Classes

	Step 3: PolySpace Viewer – Exploring Results
	Overview
	Modes of Operation
	Download Results into the Viewer
	Reviewing PolySpace Results in “Expert” Mode (“training.cpp”)
	Overview of Expert Mode
	Procedural Entities View (RTE View)
	Colors in the Source Code View
	More Examples of Run-Time Errors
	Advanced Results Exploration
	C++ specific checks
	Miscellaneous

	Methodological Assistant
	Methodological Assistant Overview
	Opening the Methodological Assistant
	Assistant Dashboard
	Choose a Methodological Assistant

	Report Generation

	Step 4: Launch PolySpace Remotely
	Overview
	Launching an Analysis
	Managing Your Remote Analysis: the PolySpace Spooler
	Batch Commands
	Launching an Analysis in Batch
	Managing an Analysis in Batch

	Sharing Analyses Between Accounts
	Analysis-key.text File
	Example:
	Magic Key or Shared Analysis Between Projects

	Summary

	Analysis Setup
	Common Compile errors
	Includes
	Specific Keyword or Extended Keyword
	Specific Keyword
	Non ANSI Keywords
	Complex Post Preprocessing Command
	Perl Regular Expressions Summary

	Initialization of Global Variables

	Dialect Issues
	ISO versus Default Dialects
	CFront2 and CFront3 Dialects
	Variable Scope Issues
	“bool” Issues

	Visual Dialects
	Import Directory
	pragma Pack

	GNU Dialect
	Partial Support
	Syntactic Support Only
	Not Supported
	Examples
	Example 1: _asm_volatile_ keyword
	Example 2: Anonymous Structure

	Link Messages
	STL Library C++ Stubbing Errors
	Lib C Stubbing Errors
	Extern C Functions
	Standard Stubs
	Functional Limitations on Some of Stubbed Standard ANSI Function

	Methodology Using the Pre-processed .ci Files
	Overview
	Example of ci File
	Methodology Guide

	OS and Target Specifications
	List of Predefined Compilation Flags
	Target Specifications
	Generic/Custom Target

	Intermediate Language Errors
	Advanced Setup
	Reduce Oranges Step by Step
	Vary the Precision Level
	Apply Manual Stubbing
	Example
	Colored Source Code Example
	Example of Call Sequence
	Default Behavior of Global Data
	Constraining the Data
	Applying the Technique
	Integer Example

	Approximations Made by PolySpace
	Volatile Variables
	Structures with Volatile Fields
	Absolute Addresses
	Pointer Comparison
	Left Shift on Negative Variables
	Some Bitwise Operators
	Bitfields
	Float Loops
	Shared Variables
	Array of Function Pointers
	Trigonometric Functions
	Unions
	Loop Exit Conditions
	Constant Pointer

	Variables
	How are Variables Initialized
	Data and Coding Rules
	Variables: Declaration and Definition
	How Can I Model Variable Values External to My Application?

	Types Promotion
	An Example of an Unsigned Promoted to Signed
	What are the Promotions Rules in Operators?
	Example

	Built-in Functions
	Stubs of stl Functions
	Stubs of libc Functions

	PolySpace Class Analyzer Process
	Analyzing C++ Classes
	Overview
	Why Provide a Class Analyzer

	Types of Classes
	Simple Class
	Simple Inheritance
	Multiple Inheritance
	Abstract Class
	Virtual Inheritance
	Other Types
	Template
	Example
	Class Integration

	PolySpace C++ add-in for Visual Studio
	Overview
	Using PolySpace Software Within Visual Studio
	Overview
	PolySpace Parameters Within Visual Studio
	PolySpace Menu
	PolySpace Log Tab
	PolySpace Right-Click Menu

	Performing a File Verification from Visual Studio
	Analyzing Classes
	The Configuration File and Default Options

	Analyzing an Entire Project

	PolySpace UML Link RH Product
	Getting Started
	Overview
	Step 1 – Opening the Example Airbag Model
	Step 2 – Starting an Analysis
	Step 3 – The Start Analysis Panel
	Step 4 – Navigating from the PolySpace Results to the Rhapsody M

	PolySpace Panel
	Overview
	Start Button
	Start Analysis Dialog

	Stop Button
	Compilation Log Button
	Configure Button
	Manage Analyses Button
	View Results Button
	Browse for Results Button
	Help Button

	Installing the Integration into an Existing Model
	Overview
	Merging the PolySpace Code with Rhapsody

	Other Topics
	Analysis Information
	Default Template CFG Options
	Back to Model Viewer Link

	Working with Results Review
	Basics: Prerequisites to Reviewing PolySpace Results
	Overview
	Grey Follows Red
	Summary

	What is the Message and What does it Mean?
	Explanation
	Summary

	What is the C++ Explanation
	Summary

	Review Run Time Errors: Fix Red Errors
	Review Dead Code Checks: Why is Grey Code Interesting
	Functional Bugs Can Be Found in Grey Code
	Structural Coverage

	How to Conclude an Orange Review
	What is an Orange?
	What are the Different Sources of Oranges?
	How to Determine the Cause of an Orange?

	Methodology: Selective Orange Review
	Overview
	The Basic Principles
	The Rationale Behind the Approach
	Potential Bug
	Inconclusive Check
	Basic Imprecision

	In Practice
	Step by Step
	Considering the Effects of Application Code Size

	Colored Source Code for C++
	Category of Checks
	Acronyms associated to C++ specific constructions:
	Acronym Not Related to C++ Constructions (Also Used for C Code):

	Function Returns a value: FRV
	C++ Example
	Explanation

	Non Null this-pointer: NNT
	C++ Example
	Explanation

	Positive Array Size: CPP
	C++ Example
	Explanation

	Incorrect typeid Argument: CPP
	C++ Example
	Explanation

	Incorrect dynamic_cast on Pointer: CPP
	C++ Example
	Explanation

	Incorrect dynamic_cast on Reference: CPP
	C++ Example
	Explanation

	Invalid Pointer to Member: OOP
	C++ Example
	Explanation

	Call of Pure Virtual Function: OOP
	C++ Example
	Explanation

	Incorrect Type for this-pointer: OOP
	C++ Example
	Explanation

	Potential Call to: INF
	C++ Example
	Explanation

	Non-Initialized Variable: NIV/NIVL
	C++ Example
	Explanation

	Non-Initialized Pointer: NIP
	C++ Example
	Explanation

	User Assertion Failure: ASRT
	C++ Example
	Explanation

	Overflows and Underflows
	Scalar and Float Overflows: OVFL
	Scalar and Float Underflows: UNFL
	Float Underflow and Overflow: UOVFL
	Overflow on the Biggest Float
	Constant Overflow
	Float Underflow Versus Values Near Zero

	Scalar or Float Division by zero: ZDV
	C++ Example

	Shift Amount is Outside its Bounds: SHF
	C++ Example
	Explanation

	Left Operand of Left Shift is Negative: SHF
	C++ Example
	Explanation

	Power Must be Positive: POW
	C++ Example
	Explanation

	Array Index is Outside its Bounds: OBAI
	C++ Example
	Explanation

	Function Pointer Must Point to a Valid Function: COR
	C++ Example
	Explanation

	Wrong Number of Arguments: COR
	C++ Example
	Explanation

	Wrong Type of Argument: COR
	C++ Example
	Explanation

	Pointer is Outside its Bounds: IDP
	C++ Example
	Explanation
	Understanding Addressing
	Understanding Pointers
	C++ Example
	Explanation

	logic_error is Thrown: EXC
	C++ Example
	Explanation

	runtime_error is Thrown: EXC
	C++ Example
	Explanation

	Function throws: EXC
	C++ Example
	Explanation

	Call to Throws: EXC
	C++ Example
	Explanation

	Destructor or Delete Throws: EXC
	C++ Example
	Explanation

	Main, Tasks or C Library Function Throws: EXC
	C++ Example
	Explanation

	Exception Raised is Not Specified in the Throw List: EXC
	C++ Example
	Explanation

	Throw During Catch Parameter Construction: EXC
	C++ Example
	Explanation

	Continue Execution in __except: EXC
	C++ Example
	Explanation

	Unreachable Code: UNR
	C++ Example
	Explanation

	Values on Assignment: VOA
	C++ Example
	Explanation

	Non Terminations: Calls and Loops
	Non Termination of Call: NTC
	Non Termination of Loop: NTL

	Advanced Results Review
	Red Checks Where Grey Checks were Expected
	Potential Side Effect of a Red Error

	Options Description
	Overview
	Sources/Includes
	-results-dir Results_Directory
	-sources files or -sources-list-file file_name
	-I directory

	General
	Overview
	-prog Session identifier
	-date Date
	-author Author
	-verif-version Version
	-voa
	-keep-all-files
	-continue-with-existing-host
	-allow-unsupported-linux

	Targets/Compilers
	-target TargetProcessorType
	GENERIC ADVANCED TARGET OPTIONS
	-default-sign-of-char [signed|unsigned]
	-short-is-8bits
	-int-is-32bits
	-long-long-is-64bits
	-double-is-64bits
	-pointer-is-32bits
	-align [8|16|32]

	-OS-target OperatingSystemTarget
	-D compiler-flag
	-U compiler-flag
	-include file1[,file2[,...]]
	-post-preprocessing-command "command"
	-post-analysis-command <file_name> or "command"

	Compliance with Standards
	-dos
	Embedded Assembler
	-discard-asm

	-wchar-t-is-unsigned-long
	-size-t-is-unsigned-long
	-no-extern-C
	-no-stl-stubs
	-dialect DialectName
	-wchar-t-is
	-for-loop-index-scope
	Visual Specific Options
	-import-dir directory
	-ignore-pragma-pack
	-pack-alignment-value value
	-support-FX-option-results

	-ignore-constant-overflows
	-allow-undef-variables
	-allow-negative-operand-in-shift
	-Wall

	PolySpace Inner Settings
	-main sub_program_name
	Generate a Main Using a Given Class
	-class-analyzer
	-class-only
	-class-analyzer-calls
	-no-constructors-init-check

	-main-generator-calls
	General options for the generation of mains
	-function-called-before-main
	-main-generator-writes-variables

	-no-automatic-stubbing
	-ignore-float-rounding
	-detect-unsigned-overflows
	-extra-flags option-extra-flag
	-cpp-extra-flags flag

	Precision/Scaling
	-quick
	Benefits
	Limitations

	-O(0-3)
	-from verification-phase
	-to verification-phase
	-path-sensitivity-delta number
	-context-sensitivity "proc1[,proc2[,...]]"
	-context-sensitivity-auto
	-respect-types-in-globals
	-k-limiting number
	-respect-types-in-fields
	-inline "proc1[,proc2[,...]]"
	Tuning Precision and Scaling parameters
	Precision versus Time of Analysis
	Precision versus Code Size

	MultiTasking (PolySpace Server for C/C++ Only)
	-entry-points str1[,str2[,...]]
	-critical-section-[begin or end] "proc1:cs1[,proc2:cs2]"
	-temporal-exclusions-file file_name

	Specific Batch Options
	-server server_name_or_ip[:port_number]
	-sources-list-file file_name
	-v | -version
	-h[elp]

	Static Verification
	What is Static Verification
	Exhaustiveness

	Glossary

	tables
	ST7 (Hiware C compiler : HiCross for ST7)
	ST9 (GNU C compiler : gcc9 for ST9)
	Hitachi H8/300, H8/300L
	Hitachi H8/300H, H8S, H8C, H8/Tiny

